
FPC s.r.o.
Skladová 22
326 00 Plzeň

E-mail: info@fpc.cz
Tel.: +420 373 730 389

Fax.: +420 373 729 574

SerialCom

Revision 2022.05.20

 SerialCom

2 © 2022 FPC s.r.o.Rev. 2022.05.20

Table of Contents

1 Description 3

2 Commands 3

. 32.1 *idn? (Identification)

. 32.2 set (Set global parameters)

. 42.3 open (Connect to port)

. 52.4 close (Disconnect from port)

. 52.5 write/writeln (Write/write-line)

. 62.6 read/readln (Read/read-line)

. 72.7 request (Request/answer)

. 82.8 linebuf (Line-buffer control)

. 92.9 bytebuf (Byte-buffer control)

. 112.10 trig (String trigger)

SerialCom

3 © 2022 FPC s.r.o.Rev. 2022.05.20

1 Description

Universal serial communication via standard hardware/virtual serial ports (COM).

Features:
Read/write data (text, binary)
Read buffer (text, binary)
Hardware signals control

2 Commands

2.1 *idn? (Identification)

*idn?

Gets the plug-in identification string.

Parameters

No parameters.

Return value

The identification string in standard format "<company>,<product/name>,<serial-no>,

<version>".

2.2 set (Set global parameters)

set:{RecvMode=[enum]}{;Async=[bool]}{;WrEnding=[string]}{;RdEnding=[string]}
{;RdTimeout=[int]}{;WrTimeout=[int]}{;AutoDiscard=[bool]}

Set global parameters: asynchronous mode, line endings and timeouts.

Parameters

RecvMode

(deprecated, replaced by
"Async")

[enum] Receiving mode:
discard - All incoming data are discarded

buf, bytebuf/linebuf - Buffering incoming data

request - No data are buffered, communication

style is request/answer
Async [bool] true = asynchronous mode (buffering, read/readln

not allowed)
false = synchronous mode (no buffering, read/

readln possible)
WrEnding [string] Line-ending character(s) to be used by writeln

command ("\n" by default)
RdEnding [string] Line-ending character(s) to be used by readln and

request commands ("\n" by default)
AutoDiscard

(or AutoDiscardInBuffer)
[bool] Clear byte and line buffers at the start of any writing

operating (write, writeln and request)
RdTimeout [int] Receive timeout, 10 to 25000 [ms]. Applied to read,

readln and request commands.
(2000ms by default)

WrTimeout [int] Write timeout, 10 to 25000 [ms]. Applied to write,
writeln and request commands.
(2000ms by default)

SerialCom

4 © 2022 FPC s.r.o.Rev. 2022.05.20

Rts [bool] Manual control of RTS line. Possible when no
handshake is set (RTS/CTS).

Dtr [bool] Manual control of DTR line.

Note: if any parameter is not passed, the value is not changed, not replaced by default.

Return value

No return value

Examples

set:Async=true:WrEnding="\r":RdEnding="\r":RdTimeout=3000

Set asynchronous mode, write and read endings to "\r" (CR) character and read-timeout to 3 sec.

set:rts=true:dtr=true

Set both RTS and DTR line active (ON).

2.3 open (Connect to port)

open:{port=[string]}{;baudrate=[int]}{;databits=[int]}{;stopbits=[enum]}
{;parity=[enum]}{;handshake=[enum]}

Connect to default pre-configured port or to specified port using specified paramters.

Parameters

port [string] Target port to connect, i.e. "COM1".
Default: (from pre-configuration)

baudrate [int] Baudrate [bps], 300 to 115200. Typical baudrates are 300, 600,
1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600 and
115200 bps.
Default: (from pre-configuration)

databits [int] Number of data bits, 5 to 8. Typical frame consists of 8 data-
bits.
Default: (from pre-configuration)

stopbits [enum] Number of stop bits:
1

1p5 (or 1.5)

2

Typical frame has 1 stop bit.
Default: (from pre-configuration)

parity [enum] Parity, the additional computed frame's bit:
none

odd

even

Default: (from pre-configuration)
handshake [enum] Flow control:

none - no flow control

xonxoff - software flow control using reserved characters

Xon and Xoff
rtscts - hardware flow control using RTS/CTS singnals

Default: (from pre-configuration)

Return value

No return value

SerialCom

5 © 2022 FPC s.r.o.Rev. 2022.05.20

Examples

open

Connect to port using all default pre-configured parameters.

open:port=COM1

Connect to specified port "COM1", all other parameters are taken from pre-configuration.

open:port=COM2;baudrate=19200;stopbits=1p5;parity=even;handshake=xonxoff

Connect to COM2 at 19200 bps, with 1.5 stop bits, even parity and software Xon/Xoff handshake. The
number of data-bits is taken from device configuration.

2.4 close (Disconnect from port)

close

Disconnect from currently opened COM port.

Parameters

No paramters

Return value

No return value

2.5 write/writeln (Write/write-line)

write:<str>{:ashex=[bool]}
writeln:<str>

Send string via opened COM port. The writeln command appends the WrEnding string automatically.

Parameters

str [string] String to be sent.
Use escape sequences to send non-printable characters.

asHex [bool] All 2-characters will be converted treated as hex string. Length
of the str parameter must be even.
Default: false

Return value

No return value

Examples

write:"abc 123"

Send 7 bytes: "abc 123". Quotes are recommended because of space character.

write:\xAA

Send 1 byte: 0xAA (10101010 in binary). Escape-sequence is required, because the 0xAA is non-
printable character.

write:"\x1Babc\x00"

Send 5 bytes: 0x1B (ESC) + "abc" + 0x00 (NULL). Quotes are recommended because of more

characters and escape-sequences (but not required).

SerialCom

6 © 2022 FPC s.r.o.Rev. 2022.05.20

writeln:abc123

Send 7 bytes: "abc123\n". The "\n" is the currently set WrEnding string.

write:"002255FF71"

Send 5 bytes: "0x00 0x22 0x55 0xFF 0x71".

2.6 read/readln (Read/read-line)

read{:<count>}{:timeout=[int]}{:ashex=[bool]}
readln{:timeout=[int]}

Read data from serial-port buffer:
all (read without count parameters)

specified count (read with count parameters)

until RdEnding string has been received (readln)

Cannot be used when asynchronous mode is active. See "async" paramter of set command.

Parameters

count [int] Number of bytes to be read for serial-port buffer. The reading is
blocked until specified number of bytes has been read (timeout
limited), otherwise the timeout error is thrown. If the parameter
is not present, all available data are read at the time of reading
(it is possible to get the empty string - no data).
Default: (all data)

timeout [string] Maximum time to wait until specified number of bytes are
received (read) or read ending-string is received (readln).

Default: timeout set by the RdTimeout parameter of set

command
ashex [bool] All bytes/characters will be converted into hex string.

Default: false

Return value

Received data. Non-printable characters are replaced by escape-sequences.

Examples

read

Read all available data.

read:count=20

Waits until 20 bytes are received for the default timeout

readln

Waits until read ending-string is received and return received data without the ending-string. Timeout is the
default.

readln:timeout=5000

Same like the "readln" above, but with overriding the timeout to 5 seconds.

read:count=4:ashex=true

Waits until 20 bytes are received for the default timeout. If the received data was 'idn?', the returned result
will be ' 69646E3F'.

SerialCom

7 © 2022 FPC s.r.o.Rev. 2022.05.20

2.7 request (Request/answer)

request:<str>{:wrline=[bool]}{:read=[int]}{:repeat=[int]}{:interval=[int]}{:accept=[string]}
:<str>{:...}

Synchronous request/answer communication: write string to COM and waits for a reply for a defined timeout.
Starting the command by a colon ":" only is the short way (alias) to call request command - see examples

below.

Asynchronous mode is temporarily disabled until request is done (or finished by timeout). Then the
previous state is restored.

Parameters

str [string] String to be sent.
Use escape sequences to send non-printable characters.

wrline [bool] If true, append the write ending-string (WrEnding).
Default: true

read [int] If the parameter is:
present - wait for a specified number of bytes, range 1 to N
non-present (default) - wait for the read ending-string
(RdEnding)

repeat [int] Number of repeats after receive timeout or failed accept filter.
When repeat occurs, param 'str' will be write again, before
waiting for received data.
Default: 0

interval [int] Interval between repetition.
When repeat is zero, this parameter is ignored.
Default: 0

accept [string] Accept filter for received data - to compare is used Regex.
Default: nothing

Return value

Reply to request, without the ending string. Non-printable characters are replaced by escape-sequences.

Examples

Note: examples below expects the "\n" to be set for both WrEnding (write ending-string) and RdEnding

(read ending-string).

request:*idn?

Send 6 bytes: "*idn?" + "\n" ending-string and waits for answer with the read ending string

:*idn?

The same like "request:*idn?" command above, but using the short way of request command.

request:"abc":wrline=false

Send 3 bytes: "abc", without the ending string.

request:"cmd\x00":wrline=false:read=10

Send 4 bytes: "cmd" + NULL character (without the ending string) and waits for 10 bytes to be received
(fixed length).

request:"*IDN?":repeat=2:interval=100:accept="^\\w+\\.\\d{3}\\.\\d{2}"

Send "*IDN?" to the line and read the response - after successful reading it compares with regex accept
filter.
If data match regex, function returns received data.

SerialCom

8 © 2022 FPC s.r.o.Rev. 2022.05.20

If data not match regex, whole operation send-read-compare will be repeated maximally two times
(timeout or not match error can arise after this).
If data not read because of timeout, command exit immediately with error.

2.8 linebuf (Line-buffer control)

Requires asynchronous mode. See "async" paramter of set command.

linebuf:clear

Clears all lines from the buffer.

Parameters

No parameters

Return value

No return value

linebuf:count

Get number of lines in the buffer.

Parameters

No parameters

Return value

Number of lines.

linebuf:get=[var]
linebuf:pop=[var]

Get or pop line(s) from the buffer.

Parameters

get [var] Get lines:
all - get all lines in the buffer

rem - the remainder (currently receiving string before the new-

line string is received)
number(s), separated by comma "," - get selected lines from
the end of the buffer, range 0 to (count - 1), where 0 is the
last received line

pop [var] Pop (get and remove) lines:
all - get all lines in the buffer

first - get first read (time) line in the buffer

number(s), separated by comma "," - get selected lines from
the end of the buffer, range 0 to (count - 1), where 0 is the
last received line

Return value

Line(s) from the string buffer. More than one lines are separated by new-line character "\n" (ASCII 10 =
LF).

SerialCom

9 © 2022 FPC s.r.o.Rev. 2022.05.20

Examples

For example, lets have following line in the buffer:
abc

def

ghi

jkl (last received)

linebuf:get=all

Returns "abc\ndef\nghi\njkl" (4 strings, separated by "\n" character).

linebuf:get=0,2

Returns "jkl\ndef" (2 strings, separated by "\n" character).

linebuf:get=0

Returns last received string "jkl".

linebuf:savetofile=[string]

Save content of line buffer to a text-file.

Parameters

savetofile [string] Target text filename. The file is overwritten if exists.

Return value

No return value

Examples

linebuf:savetofile="c:\\lines.txt"

Saves all lines to "c:\lines.txt" file.

2.9 bytebuf (Byte-buffer control)

Requires asynchronous mode. See "async" paramter of set command.

bytebuf:clear

Clears all bytes from the buffer.

Parameters

No parameters

Return value

No return value

bytebuf:count

Get number of bytes in the buffer.

Parameters

No parameters

SerialCom

10 © 2022 FPC s.r.o.Rev. 2022.05.20

Return value

Number of lines.

bytebuf:remove=[array]

Remove specified byte ranges from the buffer.

Parameters

remove [array]
(comma-separated
numbers)

Range(s) to remove in format "index
0
,count

0
,index

1
,

count
1
,...,index

N
,count

N
".

Where:
index = zero-based start index of byte in the buffer, range 0

to (count - 1)
count = number of bytes to remove from specified index,

range 1 to (count)
If there is only one index, it is possible to leave count undefined
=> 1 byte is removed.

Return value

No return value

Examples

For example, lets have following 16 bytes in the buffer (hex-notation)
00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

bytebuf:remove=1,3,6,8

Remove 3 bytes at position 1 and 8 bytes at position 6: 00 11 22 33 44 55 66 77 88 99 aa bb
cc dd ee ff

bytebuf:remove=12

Remove 1 byte at position 14: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

bytebuf:get=[var]

Get line(s) from the buffer.

Parameters

get [var] Get lines:
all - get all bytes in the buffer

number(s), separated by comma "," - get selected bytes from
the start of the buffer, range 0 to (count - 1)

Return value

Hex-encoded bytes with fixed length of 2 per byte, without any separation (1 byte = 2 letters, 2 bytes = 4
letters, 5 bytes = 10 letters).

Examples

For example, lets have following 16 bytes in the buffer (hex-notation)
00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

linebuf:get=all

SerialCom

11 © 2022 FPC s.r.o.Rev. 2022.05.20

Returns "00112233445566778899aabbccddeeff" (16 bytes = 32 letters).

linebuf:get=2,3,6,7

Returns "22336677" (4 bytes = 8 letters).

bytebuf:savetofile=[string]

Save content of byte buffer to a binary-file.

Parameters

savetofile [string] Target binary filename. The file is overwritten if exists.

Return value

No return value

Examples

bytebuf:savetofile="c:\\bytes.bin"

Saves all bytes to "c:\bytes.bin" file.

2.10 trig (String trigger)

trig:str=[string]

Set a flag when a specified string is received.

Parameters

str [string] String to set the flag, to deactivate trigger set this string to an
empty string ("").

Return value

No return value

Examples

trig:str="enter:"

Set the string which cause trig to "enter:" (quotes required because of double-colon ":" character).

trig:str=""

Disable the previously set string trigger.

trig
trig?

Get the trigger state.

Parameters

No parameters

Return value

Returns the trigger state as "0" (the string has not been received yet) or "1" (received).

	Description
	Commands
	*idn? (Identification)
	set (Set global parameters)
	open (Connect to port)
	close (Disconnect from port)
	write/writeln (Write/write-line)
	read/readln (Read/read-line)
	request (Request/answer)
	linebuf (Line-buffer control)
	bytebuf (Byte-buffer control)
	trig (String trigger)

