*JFPC

funTEST

Programmer's Manual

Revision 2022.10.10

FPCLLC Web: www.funtestfpc.com
1401 21ST ST STER E-mail info@funtest.com
SACRAMENTO, CA 95811 Tel.:213-431-9776

funTEST

Programmer's Manual

Table of Contents

1 Introduction

2 Application configuration

2.1 Basics
21.1

3 Loginsystem

3.1 Permission levels
3.2 Standard login

3.21
3.2.2

User account list
Custom rights
Definition
Usage

3.2.2.1
3.2.2.2

4 Command-line arguments

41 Install

4.2 Login at startup
4.3 Startup project
44 Startup test-file

5 Teststation

51 IO and MX mapping

5.1.1
5.1.2
5.1.3

5.1.4

6 Testprogram

Supported devices
Aliases and segments
IO commands
*rst(Reset).
seg (Setsegment).
s (Setoutput)
c (Clearoutput)
ca (Clear all non-segmented)
r(Readinput)
ra (Read all non-segmented)
d@Delay)
MX commands
*rst(Reset).

5.1.3.1
5.1.3.2
5.1.3.3
5.1.3.4
5.1.3.5
5.1.3.6
5.1.3.7
5.1.3.8

5.1.4.1
5.1.4.2
5.1.4.3
5.1.4.4
5.1.4.5
5.1.4.6

route/croute (Set routing)

seg (Setsegment).
set/cset (SetTP).
cir(ClearTP)
d@elay)

Rev. 2022.10.10

FPC s.r.o. 2022

funTEST

Programmer's Manual

6.1

6.2

6.3

6.4

Asynchronous programflow 20
6.1.1 COMMEANGS -+« o v e e e e e e e e e e 21
6.1.1.1 #callasync (Call a function asynchronously). 21
6.1.1.2 #sync (Async function synchronization) 21
6.1.1.3 #async (Async functions control) 22
6.1.1.4 #asyncflag (Async notification system) 22
Variables.o 24
6.2.1 Standard variables 24
6.2.2 Test-filevariables e 25
6.2.3 AITAYS o o 25
6.2.3.1 Definition 25
6.2.3.2 Length 25
6.2.3.3 Usage 25
6.2.4 ComMMaANdS - - - - e 26
6.2.4.1 #cnt (Counter operations).ot 26
6.2.4.2 #var (Variable operations). 27
Interruptevents e 28
6.3.1 Eventtypes 29
6.3.1.1 prj-closing (Project closing) 29
6.3.1.2 prj-closed (Projectclosed) 29
6.3.1.3 oper-changed (Operatorchanged) 29
6.3.1.4 run-at (Run at specifiedtime) 29
6.3.1.5 run-every (Runeveryinterval) 30
CoMMaANAS . . .o 31
6.4.1 SYNtaX . . 31
6.4.2 SUMMAIY - - o ot 35
6.4.3 FIow control o oo 35
6.4.3.1 #goto (Jumptolabel). 35
6.4.3.2 #call (Callafunction). 36
6.4.3.3 #return (Return from function) o 36
6.4.3.4 #throw (Exit function witherror)., 37
6.4.3.5 #onerror, #onfail (Check forerrororfail) 37
6.4.4 Operatorinterface 38
6.4.4.1 #msg(Showamessage) 38
6.4.4.2 #dig(Showadialog) 40
6.4.4.3 #status (Set test status ofcurrentpanel)., 43
6.4.4.4 #resultlist (Result listoperations) 44
6.4.4.5 #panel (Panelscontrol) 45
6.4.4.6 #stopwatch (Integrated stopwatchcontrol) 46
6.4.4.7 #userbtn (User-buttoncontrol) 48
6.4.4.8 #adjust (Value adjustdialog), 50
6.4.5 O o e 52
6.4.5.1 #catchio (Wait for a specified 10 device input) 52
6.4.5.2 #oninput (External inputinterrupt) L. 53
6.4.6 Files - oo e 54
6.4.6.1 #file (Fileoperations) 54
6.4.6.2 #export (Exporttofile) 59

Rev. 2022.10.10 3 FPC s.r.o. 2022

funTEST

Programmer's Manual

6.4.6.3 #stat (Statistics) 60

6.4.6.4 #statrec (Basic statisticsrecord) L. 62

6.4.6.5 #statsawe (Basic statisticsawe), 62

6.4.7 Test-file . ..o e e 63
6.4.7.1 #cellread, #cellwrite, #cellerase, #cellcopy (Cell direct-access) 63

6.4.7.2 #retclear (Clearreturnvalues) 65

6.4.7.3 #testfile (Testfilecontrol) 66

6.4.7.4 #str(Stringoperations) 67

6.4.7.5 Localization 69

6.4.8 Printing oo 71
6.4.8.1 Labels 71

6.4.8.2 TeXt. 73

6.4.8.3 Spreadsheet 74

6.4.9 Specialo 75
6.4.9.1 #catch (Wait for a specified response ofdevice) 75

6.4.9.2 #login (Loginoperations) 75

6.4.9.3 #bct (Batch-test). 77

6.4.9.4 #extprocess (Run an external process) 79

6.4.9.5 #dummy (Dummy-testcontrol) 81

6.4.9.6 #Hget(Getavalue) 83

6.5 Statistics 84
6.5.1 Automated statistics - - - - - . i 84
6.5.1.1 AMSTATsheet 85

Rev. 2022.10.10

4 FPC s.r.o. 2022

funTEST Programmer's Manual

1 Introduction

FunTE STis the functionaltesting software from FPCLLC.

It allowsto create testing sequences for the target application The core of the sequenceris based on the
OpenOffice Calc sheet. This specifically formatted sheet is used to store test-program steps and runtime data.
The funTEST reads the sheet, process the data and writes return values back.

—

—

OpenOffice.org

This manual describes some funTEST functional blocks and especially test-file commands usage.

2 Application configuration

To configure funTEST, log as an administrator and click "Administrator" button on the main window.

Test-station

All testing and measuring devices are unified into the test-station. FUnTEST does not access hardware
directly, this is realized by device plug-ins. To access any instrument the corresponding plug-in is needed.
Each plug-in runs within its own process (container process) to ensure maximum stability of the testing
system.

Project

Project contains a set of test-files (programs). A test-station must be assigned to the project - this will select
devices to be used by loaded test-file.

2.1 Basics

Switch to Basics tab, on this tab funTEST's general behaviour can be changed.

211 General

Language
funTEST language can be selected here. Application must be restarted to take effect.

Login type

Login defines rights of logged user. Login system supports plug-ins, login procedure can be customized to
match customer's requirements (e.g. login using card-reader, database login, etc...). By default, the standard
login is selected. This default plug-in uses local encrypted file to store user accounts. funTEST cannot start
without a valid login plug-in. If any other selected plug-in failed to load, funTEST will try to load a standard
plug-in.

Optimize for touchscreen

Some controls, especially in the operator interface can be optimized for a touch-screen. When checked, these
controls are enlarged.

Rev. 2022.10.10 5 FPC s.r.o. 2022

funTEST Programmer's Manual

3 Login system

funTEST has implemented a file-based logging system to monitor running events. Log files are stored inside
funTEST logs subdirectory like simple text file with .log extension (or compressed .gz for older). From
application, log window can be shown by click on "System" menu in the right-bottom corner - "Show logs"
item.

Inside the "Logging system" section the logging system can be globally disabled, enable to log also debug
entries, set limit of count of log entries in the computer's memory and set parameters of logging to file.

3.1 Permission levels

In the funTEST there are 3 basic permission levels:

Permission name Permission key Description

Administrator adm Access to global configuration, project definition, test-file definition
and can add test-files.

Programmer prg The programmer cannot change the funTEST's configuration, but
can open the test-file and edit the test-file.

Operator oper Operator is not allowed to edit anything, operator can only select

the project and testfile and run in - the production process.

Administrator and Programmer is not allowed to start the test. Each permission is separated level, not the
higher level and it does not include rights of another level. This means the Administrator level does not include
the Programmer and Operator level and Programmer does not include the Operator level.

User with full access = Administrator + Programmer + Operator.

Each permission level is identified by a key - adm, prg and oper. This key is a reference for the test-file and
it's used for queries.

3.2 Standard login
In this chapter, the default standard login plug-in (local file-based) is described.

Use only password to login

When checked, the user name will not be required during login. Make sure, that every user has a unique
password set.

3.2.1 User account list

The list shows all user accounts. There you can add a new user, modify or delete the existing one.

New user account

To add a new user, click the "New user..." button below the list. The "New user" dialog will pop up. Type a
user name, login name (this must be unique), password (cannot be empty) and select account rights (at least
one must be checked). Click "OK" to confirm new user account.

Edit existing account

In the list select desired account and click the "Edit" button below the list. The "Edit user" dialog will pop up.
Any value can be changed. If you do not want to change the password, leave it blank.
Note: the administrator account is only possible to change the password

Delete existing account

Select desired account, click "Remowve" and confirm.
Note: the administrator account cannot be removed

Rev. 2022.10.10 6 FPC s.r.o. 2022

funTEST Programmer's Manual

3.2.2 Custom rights

The standard login plug-in support custom rights.

The custom right allows to define additional rights. This allows permission extension of identification in the

test-file. They are always based on basic permission levels (base rights). Base rights define the behaviour of
additional right in the funTEST (because the funTEST uses 3-level permission system). The resulted
permission will be base-rights + additional right.

3.2.2.1 Definition

Custom rights can be defined via configuration, tab "Login Options", button "Custom rights...":

Custom rights >
MName Right Base rights
Adjuster adj oper

Mew right ... Edit Remove Close

Dialog with custom rights list

When adding new custom right, it's always necessary to define "base rights" of the additional one.
For example, you create the "Adjuster" additional permission, with "Operator" like base rights:

Edit right >
Properties
Mame: |}-‘v:|juster
Key: |aﬁ

Base rights: Operator
[] Programmer
[] Administrator

Cancel QK

Additional right definition

The "Adjuster" will have the behaviour of "Operator" in the funTEST, but in the test-file you can identify the
additional right. The key "adj" is the identification to the test-file - it's important property, make it unique and
as short as possible (typically shorten word, or two shorts with a hyphen "-" and so on).

3.2.2.2 Usage

Definition

Rev. 2022.10.10 7 FPC s.r.o. 2022

funTEST Programmer's Manual

All created custom rights will be shown in the user definition dialog:
Edit user >

Edit user

.i' Mame: |‘.".|'|:-rker'| |
.‘ Lagin name: |wrk |
Password: | |

|

Corfirm password: |

Rights: (] Operator
[] Programmer
| | Administrator

Adjuster
[] Technician
Concel

Selection of addition right in the user definition

It's possible to select only the additional right, because the base rights are defined in the additional
permission. Of course in this dialog you can combine it if it's necessary.

Test-file identification

It's possible to identify the additional rights in the test-file in the IDENTIFICATION section of HEAD:

& |IDENTIFICATION

7 |Project name Dev

& |Station name Dev

9 [Operator name Workerl

10 [Login name

11 |User rights

12 |TestFile name B

In this place will always be the combination of additional + base rights.

4 Command-line arguments

It is possible to run funTEST with command-line arguments to automatically i.e. login or start project
immediately after startup.

Usage:

funTEST. exe [arguments]

4.1 Install

-—-install

Perform initialization:

¢ Create application's data directory structure

¢ Create default user-definition file of standard login plugin

Warning: previous user-definition file of standard login plugin will be overwritten!

Rev. 2022.10.10 8 FPC s.r.o. 2022

funTEST Programmer's Manual

4.2 Login at startup

--startup-login <username>: <password>

Login to funTEST via command-line argument. Do not show the login dialog while funTEST is starting.

Parameters

username [string] Username to be used
password [string] Password of specified user
Examples

--startup-login "fpc: secret"
Auto-login using "fpc" user with "secret" password.

4.3 Startup project

--startup-project <project-name>

Auto-select the project when funTEST starts. When no start-up testfile is selected, the test-file selection
dialog of specified project will appear.

Parameters

project-name [string] Project name to be selected

Examples

--startup-project "demo"
Use "demo" like a funTEST startup project.

4.4 Startup test-file

--startup-testfile <testfile-name>

Auto-select the test-file when funTEST starts. Startup project is required to select the test-file.

Parameters

tesfile-name [string] Test-file name to be started
Examples

--startup-project "demo" --startup-testfile "test"

Set "test" test-file from project "demo" like a startup project.

5 Teststation

5.1 10 and MX mapping
10 mapping

The 10 mapping in then funTEST's test-station provides an unification access to IO devices. In the application
can be more than one 10 interface, with its own configuration and access. The IO mapping system finds all
supported IO devices and joins inputs/outputs to only one virtual 10 device. It does not touch the access
to the hardware, every 10 plugin remains to be controlled by its own plugin.

Rev. 2022.10.10 9 FPC s.r.o. 2022

funTEST Programmer's Manual

The 10 mapping is required for use the dedicated IO column in the test-file.

10 command

10 MAPPING SYSTEM

Device Plugin System

Device Plug-in #1 ® ® ® Device Plug-in #N

10 Device #1 IO Device #2 o0 o0 10 Device #N

MX mapping

The MX (matrix) mapping is similar to IO mapping. MX mapping system finds all supported MX devices and
joins test-points together to only one virtual MX device.

The MX mapping is required for use the dedicated MX column in the test-file.

Rev. 2022.10.10 10 FPC s.r.o. 2022

funTEST

Programmer's Manual

MX command

No
> Use MX
mapping?
Yes
MX MAPPING SYSTEM
Device Plugin System
Device Plug-in #1 ® ® ® | Device Plug-in #N

MX Device #1

MX Device #2 0o

MX Device #N

Against IO mapping, there is a possibility to bypass the MX mapping. In this case, only first MX device in the

test-station will be used to control by MX column. Commands are directly forwarded to this device. Aliases
and segmentation are not used.

5.1.1 Supported devices

IO devices

Vendor Model Connection Inputs Outputs
FPC USB 8180 usB 8 8
FPC USB 161160 usSB 16 8
FPC Relay Boards CFPC-108 and CFPC-138 |RS-232/USB - 40
FPC MatrixBox MX2400 10 Ethernet 16 16
Advantech PCI-1730 PCI 16 16
Advantech PCIE-1730 PCI-Express 16 16
Papouch Quido RS 8/8 RS-232 8 8

Rev. 2022.10.10

11

FPC s.r.o. 2022

funTEST Programmer's Manual

Matrix devices

Vendor Model Connection Max TP |Routing
support
FPC MatrixBox MX75 USB 75 -
FPC MatrixBox MX100, MX400/4 USB 100 Yes
FPC MatrixBox MX400 USB 400 Yes
FPC MatrixBox MX2400 MX Ethernet 544 Yes

Devices listen above are recognized by funTEST as IO/MX device and included to mapping system. Support of
connected device by the mapping system is indicated by 10 or Matrix in the Type column in the definition of
test-station, tab "Devices":

General | Devices | |0 mapping | MX mapping

Enabled Serial number Alias Name Type Connection
u 1430201412050002 1430201412050002 MatricBox MX2400 Generic Plug-n system
v 143020141205000210 mx-o MatricBox MX2400:10 o] Plug+n system
v 1430201412050002M% mex MatrieBox MX2400:MX Matrix Plug+n system
1430201412050002MM 1430201412050002MM MatriBox MX2400:MM Generic Plug-n system
v 16100026 usb-io LUSE 161160 12 Plug-in system

5.1.2 Aliases and segments

For every input/output (IO mapping) or test-point (MX mapping) is possible to define alias and segment. Using
aliases you can name every input/output or TP and use them in the test-program instead of just numbers. This
makes the test-program as clear as possible and it is highly recommended.

Using segments, it is possible to divide inputs or outputs to logical groups. Segments enables you to define
more pins with the same alias and divide them to groups, for example for multipanel testing.

IO segment example

MX segmenting is used by the same way.

Output nr. |[Alias Segment
0 gnd 1
1 vee 1
2 gnd 2
3 vee 2

We hawe a dual-panel test, where two identical boards has to bested. Every board has power supply, which
has to be connected before functional testing. This means, the command to SET output must be called on 10
mapping using "gnd" and "vcc" aliases. But there are two "gnd" and two "vcc" defined:

Without segments

These aliases would have to be renamed to unique names, for example "gnd1" and "vcc1" for board A and
"gnd2" and "vcc2" for board B. In the test-program also must be two blocks with IO command, separate for
board A and B.

Using segments

There can be more pins with same alias defined. In the test-program you will use the same 10 command both

Rev. 2022.10.10 12 FPC s.r.o. 2022

funTEST Programmer's Manual

for board A and B. The difference is in specifying segment (seg command), before the 10 command will be
executed. When you for example set segment to "2" and call command to set "gnd" and "vcc", the outputs 2
and 3 will be set.

Segments makes the program more easier, especially when multi-panel testing with a lot of same boards.

5.1.3 10 commands

Commands to control IO mapping system.

10 mapping system accepts more commands in a chain at once.

Example

s:cs:d: 50: s:sel:d:50: r: val: d: 20: c: cs: sel: d: 20: r: state

This is a regular command to IO mapping system, that will do following:
Set "cs" output(s)

Delay for 50 ms

Set "sel" output(s)

Delay for 50 ms

Read "val" input(s)

Delay for 20 ms

Clear "cs" and "sel" output(s)

Delay for 20 ms

Read "state" input(s)

Return value will contain states of "val" inputs and "state" inputs in order as they has been read.

cs output

sel output

read val
read state

)

| | l |] | | l |

Y I ey B B S E E—
0 10 20 30 40 50 60 70 80 90 1

I [I
0 110 120 130

T
0

—

0 150

5.1.3.1 *rst (Reset)

*rst
Clear all outputs (without applying outputs) and clear current segment setting.

Parameters

No parameters

Return value

No return value

Rev. 2022.10.10 13 FPC s.r.o. 2022

funTEST Programmer's Manual

5.1.3.2 seg (Set segment)

Set currently active segments. Previous settings is cleared.

Parameters

seg [int] Number of segment, range 1..N

Return value

No return value

Examples

seg: 1: 3
Set currently active segments to 1 and 3.

seg: *
Clear all currently active segments.

Parameters

No parameters

Return value

No return value

5.1.3.3 s (Set output)

Set specified output(s) to ON state. The command reflect current segment settings.

Parameters

out [int] or [string] Pin number or pin alias of output

Return value

No return value

Examples

s: 3: 7: gnd: vcc
Set outputs with numbers 3 and 7 and all outputs with aliases "gnd" and "vcc" in currently active segment

(s).
5.1.3.4 c (Clear output)

Set specified output(s) to OFF state (clear). The command reflect current segment settings.

Parameters

Rev. 2022.10.10 14 FPC s.r.o. 2022

funTEST Programmer's Manual

out [int] or [string] Pin number or pin alias of output

Return value

No return value

Examples
c: 3: 7: gnd: vcc
Clears outputs with numbers 3 and 7 and all outputs with aliases "gnd" and "vcc" in currently active
segment(s).
5.1.3.5 ca (Clear all non-segmented)
Ca

Set all outputs to OFF state, without applying segment settings.

Parameters

No parameters

Return value

No return value

5.1.3.6 r(Read input)

Read state of specified inputs(s). The command reflect current segment settings.

Parameters

in [int] or [string] Pin number or pin alias of input

Return value

1 =0ON
0 = OFF

When more inputs are passed, results are separated by a color ":" (i.e. "0: 1: 1: 0: 1")

Examples

r: state
Read all inputs with alias "state" in currently active segment(s).

r:4:8:12
Read inputs with numbers 4, 8 and 12.

5.1.3.7 ra (Read all non-segmented)

ra
Read all inputs, without applying segment settings.

Parameters

No parameters
Rev. 2022.10.10 15 FPC s.r.o. 2022

funTEST Programmer's Manual

Return value

Input states 0 or1, separated by a colon ":
For example for total of 8 inputs (in order 0 to 7): 0: 1: 0: 1: 1: 0: 0: 1

5.1.3.8 d (Delay)

d: <delay>

Delay for a number of milliseconds. Using this command it is possible the generate for example a pulse using
only one command.

Parameters

delay [int] Number of milliseconds to delay.

Return value

No return value

Examples

s:led: d: 500: c: led
Set output(s) with alias "led" for 500 ms.

5.1.4 MX commands
Commands to control MX mapping system.

MX mapping system accepts more commands in a chain at once. The same like IO commands.

Example

route: imeasl: on: cset: 1: 10: 20: h: 30: 40

Will do:
e Set current measure #1 (MX400 series) ON
e Clear previously connected TPs, and connect TPs 10 and 20 to L-bus and TPs 30 and 40 to H-bus

5.1.4.1 *rst (Reset)

*rst
Disconnect all TPs and clears all currently active segments.

Parameters

No parameters

Return value

No return value

5.1.4.2 route/croute (Set routing)

This commands requires a device with routing support. Arguments depends on physically connected device -
MatrixBox MX400-series has different routing than MX2400-series. For commands, see the route command
reference for the specific device.

Rev. 2022.10.10 16 FPC s.r.o. 2022

funTEST Programmer's Manual

This is not related with MX mapping (test-points).
route -or- croute{: <device>}: <command>

The "croute" variant of command is the same like "route", but it clears previous routing settings before setting
new one.

Parameters
device [string] Alias of target MX device to set routing.

Required if there is more than one MX device in the test-station.
command [string] Hardware-dependent route command to specified device.

Return value

No return value
5.1.4.3 seg (Set segment)
seqg: <sego>{: <seg,>:...:<seg >1
Set currently active segments. Previous settings is cleared.

Parameters

seg [int] Number of segment, range 1..N

Return value

No return value

Examples

seg:1:3
Set currently active segments to 1 and 3.

seg: *
Clear all currently active segments.

Parameters

No parameters

Return value

No return value

5.1.4.4 set/cset (SetTP)
Connect specified test-point(s) to the L/H BUS.

The "cset" command is same like "set", but all previously connected TPs are disconnected first.
This command uses the MX mapping - all TP aliases are replaced with corresponding TP numbers first. The
current segment settings is also reflected.

set: <tpL>: <tpH>

Connect TP pair (low + high) to BUS.

Rev. 2022.10.10 17 FPC s.r.o. 2022

funTEST Programmer's Manual

Parameters
tpL [int] or [string] Test-point low, number or alias
tpH [int] or [string] Test-point high, number or alias

Return value

No return value

Examples

set:10: 20
Connect TP10 to LOW bus and TP20 to HIGH.

set: gnd: vcc
Connect all test-points with "gnd" alias to LOW bus and all test-points with "vcc" alias to HIGH bus.

Connect specified list of test-points to LOW bus and specified list to HIGH bus.

Parameters
tpL, [int] or [string] Test-point(s) low, number or alias
tpH, [int] or [string] Test-point(s) high, number or alias

Return value

No return value

Examples

set:1:10:20: h: 30:40
Connect TPs 10 and 20 to LOW bus and TPs 30 and 40 to HIGH bus.

set: 1: gnd: 10: h: vcec: 20
Connect all testpoints with alias "gnd" and TP10 to LOW bus, and all testpoints with "vcc" and TP20 to
HIGH bus.
SE@iEs €
Disconnect all TPs from the BUS.
Obsolete command, not recommended to use. Replacement: c1r: *
Parameters

No parameters
Return value
No return value

5.1.4.5 cir (Clear TP)
Disconnect specified test-point(s) from the L/H BUS.

This command uses the MX mapping - all TP aliases are replaced with corresponding TP numbers first. The
Rev. 2022.10.10 18 FPC s.r.o. 2022

funTEST Programmer's Manual

current segment settings is also reflected.
set: <tpL>: <tpH>

Disconnect TP pair (low + high) from the BUS.

Parameters
tpL [int] or [string] Test-point low, number or alias
tpH [int] or [string] Test-point high, number or alias

Return value

No return value

Examples

clr:10: 20
Disconnect TP10 from LOW bus and TP20 from HIGH.

clr: gnd: vcc
Disconnect all test-points with "gnd" alias from LOW bus and all test-points with "vcc" alias from HIGH
bus.

Disconnect specified list of test-points from LOW bus and specified list from HIGH bus.

Parameters
tpL, [int] or [string] Test-point(s) low, number or alias
tpH, [int] or [string] Test-point(s) high, number or alias

Return value

No return value

Examples

clr:1:10:20: h:30:40
Disconnect TPs 10 and 20 from LOW bus and TPs 30 and 40 from HIGH bus.

clr:1l:gnd: 10: h: veec: 20
Disconnect all testpoints with alias "gnd" and TP10 from LOW bus, and all testpoints with "vcc" and TP20
from HIGH bus.

1l iEg =
Disconnect all TPs from the BUS.

Parameters

No parameters

Return value

No return value

Rev. 2022.10.10 19 FPC s.r.o. 2022

funTEST Programmer's Manual

5.1.4.6 d (Delay)

d: <delay>

Delay for a number of milliseconds. Using this command it is possible to put delay between connection/
disconnection TP(s) in the one command.

Parameters

delay [int] Number of milliseconds to delay.

Return value

No return value

Examples

cset:10:20:d:100: set: 30:40
Connect TP10 to LOW, TP20 to HIGH, delay for 100 milliseconds and then connect also TP30 to LOW
and TP40 to HIGH.

6 Testprogram

6.1 Asynchronous program flow

FunTEST since version 0.9.20709.0721 supports an asynchronous program flow in separated thread(s) -
parallelism.

Functionality diagram

MAIN THREAD
‘ #command ‘
#command
: 1. Create new thread with NEW THREAD
| independent program flow

o ‘ #callasync label ‘ p label 2. Command processing
VE) ‘ s) ‘ ‘ TR ‘ in the new thread has
@ started
8 | #command | #callasync is not blocking, | #command |
o ® command execution in)
g | ® | main thread continues | [|
= #command #command
€
3 ‘ #command ‘ v ‘ #command ‘ 3. #return terminates

‘ #sync label H } #return ‘ V separated thread and set

4. Synchronization - use flag to notify main thread
‘ #command ‘ #sync command to block
#command execution of main thread until
‘ ° ‘ called thread has finished
[]
v

The benefit is possibility of two or more independent command execution flows. This allows to perform
several sub-task at once. For example by using of two or more measurement instruments is possible to
measure more parts simultaneously.

Rev. 2022.10.10 20 FPC s.r.o. 2022

funTEST Programmer's Manual

Control

To control asynchronous program flow the following commands are dedicated:

e #callasync - start a command processing of target function in the separated independent thread

e #sync - synchronize with asynchronously called function (wait until its ends), using this command it is
possible to get the return value from async function

e #async - pause/resume/stop or get state of thread(s)

e #asyncflag - global flags (notification system) to for example block some device

6.1.1 Commands

6.1.1.1 #callasync (Call a function asynchronously)

#callasync | <function-name>{: <param0>: et <paramN>}

Call a function asynchronously in the new separated thread. Target function is represented by a label.
Function is a block of code begins by the label and ends by the #return (or #throw) command. No return value
is stored to the stack, the command is not blocking and it will not return to caller-line. The programmer

has to use the #sync command from caller thread to wait until called function is done (and optionally obtain
return value or error).

Starting funTEST version 1.0.1906.311 multiple parameters are supported. Previous versions support param,

only.
Parameters
function-name [string] Function name to run in the new thread
param [string] Optional parameter(s) to pass to target function. This parameter

(s) will be stored to the "Return Value" of the called function. If
there is more than one parameter, they will be stored to
following lines, one parameter to one line, overwriting previous
values. Line(s) with parameters name should be set to non-
execute, otherwise the parameter(s) in the "Return Value" will
be overwritten by a command after step is executed.

Default: (empty)

Return value

Return value is defined by the #return command of the target function block.

6.1.1.2 #sync (Async function synchronization)

#sync | {<label>}

Synchronize to asynchronously called function in the caller thread. This function blocks the execution flow
until specified async. function finishes.

Parameters

label [string] Label of function to be synchronized.

Return value

Return value can be defined by #return command of asynchronously called function.

Rev. 2022.10.10 21 FPC s.r.o. 2022

funTEST Programmer's Manual

6.1.1.3 #async (Async functions control)

#fasync | pause{: <thread0>} {; <threadl>} cooill@ threadN}
#async | resumef{: <thread>}{; <thread >}...{; thread}
#async | stopf{: <thread0>} {; <threadl>} cooill@ threadN}

Pause, resume or stop thread(s).

* pause -ifno thread, argument is passed, the function will pause all other currently running (including
main) asynchronous functions (threads) except the calling function's thread. If at least one thread,

argument is passed, the function will pause this/these specified thread(s).
* resume -ifno thread, argument is passed, all asynchronous functions are resumed. If at least one

thread, argument is passed, the function will resume this/these specified thread(s).

* stop -ifno thread, argument is passed, all functions except the calling and main function are stopped. If
at least one thread, argument is passed, the function will stop this/these specified thread(s). Using the
stop method cannot be stopped the main or calling thread.

Parameters

thread, [string] Name of the asynchronously called function to pause or
resume.

There are two symbolic thread names:

® @main - identify the main thread (cannot be used during the
stop operation)

® @this - identify the calling thread (cannot be used during the
stop operation)

Return value

No return value.
#async | running?{: <thread>}

There are two possibilities:

¢ thread argument is not passed - get the count of currently called thread. Not depends if it is running or
paused. The main thread is not counted.

¢ thread argument is passed - or the state of specified thread (running/paused)

Parameters

thread [string] Name of the function to get its state (paused/running). The
@main symbolic thread name can be used.

Return value

e thread argument is not passed - return value is an integer number (if only main thread is running, the
return value is 0)

e thread argument is passed - return value is 0 or 1, depends on state of the specified thread: paused ="
0", running ="1"

6.1.1.4 #asyncflag (Async notification system)

Provides a mechanism to synchronize blocks within the asynchronously called functions using the flag/
notification system. The flags are global for the running test file. They can be accessed from any level of
testing thread.

Rev. 2022.10.10 22 FPC s.r.o. 2022

funTEST

Programmer's Manual

By using the 1ock and unlock commands it is possible to get unique access to for example shared device,
used by more threads. The lock method simply waits until the another thread will finish its work and unlock

the specified flag.

#asyncflag | set| clear| get| lock| unlock: <name>
#asyncflag | wait: <name>{; change=[enum]}{; timeout=[int]}

Parameters

set [enum]

clear
get
wait
lock
unlock

name [string]
change [enum]

timeout [int]

Return value

Specifies the operation with the flag:

e set - set the flag's value to logical 1

e clear - set the flag's value to logical zero

® get - get the current flag's value

® wait - block the execution until flag's value becomes a
specified value, timeout parameter can be used here

® lock - mark selected flag as locked, if the flag is already
locked by another function, the program execution is blocked
until the flag is unlocked

e unlock - mark selected flag as unlocked (free the flag)

If the required flag does not exist, it's automatically created with
a default value. The default value is the opposite to that of
waiting - this will cause block of the execution until specified
flag is set/clear/changed.

The name of the flag.

For the ‘wait' operation only.

Specifies for what the ‘wait' operation will wait to continue the
program execution:

® one - wait for a change from logical 0 to logical 1

® zero - wait for a change from logical 1 to logical 0

® any - wait for any logical change

For the ‘wait' operation only.

Limit the time of waiting for specified change. In [ms].

No return value except the 'get' method, which returns '0' or '1".

Note

When using 1ock and unlock, make sure, that the specified flag is always unlocked when operation
finish. Otherwise the program will stop, because both (or more) threads will wait to flag unlock, which will

never be done.

Examples

#asyncflag | set: done

Creates the "done"-named flag if does not exist and set its value to logical 1.

#asyncflag | get: done

Returns current state of the "done" flag, for example "1" in this case (after set).

#asyncflag | wait: done; change=zero; timeout=30000
Wait until "done" flag's value becomes zero (logical 0). This is done by using the 'clear method in another
execution thread. Wait for a maximum of 30 seconds.

Rev. 2022.10.10

23 FPC s.r.o. 2022

funTEST Programmer's Manual

6.2 Variables

Internal funTEST's variables can be used in the "Parameters" column (arguments of a command). All
variables are replaced before executing a row. All variables names are case-sensitive.

Usage

The variable name is always between dollar signs: Svariables$
Variables can be use anywhere in the text as many times as necessary.

Examples

#msg | "Hello S$Suser-name$! Your login is $user-login$."
Display a simple message with currently logged operator name and login.

#file | text:write:"Date/time: S$YYYY$S-$SMMS-$DDS hh: Smm$: SssS\nProject:
Sproject-name$ (Sproject-dir$)":file="c: \\loaded. txt"

Writes two lines using a file command with current date/time and currently loaded project name and its
directory.

6.2.1 Standard variables

List of predefined variables. They are automatically refreshed by funTEST.

Name Description Example value

Sproject-dir$ Directory of currently used project, without the |c: \\Users\\Public\\FPC\\
ending backslash. All backslashes are doubled. [funTEST\\projects\\ECU

Sproject-names$ Name of currently used project. ECU

$teststation-dir$ |Directory of currently used test-station, without |c: \\Users\\Public\\FPC\\
the ending backslash. All backslashes are funTEST\\teststations
doubled.

Steststation-name$ | Name of currently used test-station. MPT6

Stestfile-names Name of currently loaded test-file. Varl

Suser-login$ Login name of currently logged-in user. admin

$user-names$ Name of currently logged-in user. Administrator

$lang$ Selected language, short 3-letter variant. eng

SYYYYS Current year, four-digit. 2015

SYYS Current year, 00 to 99, last two-digit. 15

MMS Current month, 01 to 12, two-digit. 09

SMS Current month, 1 to 12, single or two-digit. 9

DDS Current day, 01 to 31, two-digit. 02

D Current day, 1 to 31, single or two-digit. 2

hh Current hour, 00 to 23, two-digit. 08

$hs Current hour, 0 to 23, single or two-digit. 8

mm Current minute, 00 to 59, two-digit. 06

Sm$ Current minute, 0 to 59, single or two-digit. 6

Sss$ Current second, 00 to 59, two-digit. 04

$sS Current second, 0 to 59, single or two-digit. 4

$Spanel$ Active panel number, 0 to N. Set by #panel 3
command.

Rev. 2022.10.10 24 FPC s.r.o. 2022

funTEST Programmer's Manual

6.2.2 Test-file variables

Before the row is executed, all test-file variables from the HEAD sheet are collected and added to the list of
variables (replacing previous values).
Test-file variable names are always converted to lower-case.

If test-file localization is loaded, the caption of variable is translated.

6.2.3 Arrays
Since version 1.1.2104.1612, the funTEST supports array variables.

6.2.3.1 Definition

The place of definition is the same like any other variable - in the Variables section of HEAD sheet.
The name of variable is specific: it ends by "[1 " (undefined/variable length) or "[n] " (fixed length).
In the test-file the value of array is stored in the specific variable's cell and values are separated by "|
charater.

" (pipe)
Examples

Array[] - array variable "Index" with undefined count of array elements
Array[15] - array variable "Index" with fixed count of array elements

6.2.3.2 Length
Fixed length

The variable name is specified by "name[1ength] ", where 1ength is an integer number, higher than zero,
which specified number of elements.

Any variable command is able to work with any element or a whole array without any inicialization (e.g. read,
rotate, ..). The index must be within the range of array. It's not possible to resize the array by writing outside
the range of array.

Variable length

The variable name is specified by "name[] " - with just empty brackets. By default, there is no element in the
array.

The array is resized automatically by writing to an element on any (non-existing) index. The reading is allowed
only on existing index range. The whole-array operations are done over actual length of array.

6.2.3.3 Usage

Usage of array-types variables is the same like of non-array types, just use square bracket [n] at the end of
the variable's name to specity the index of element. Commands to work with variables are standard #cnt and
#var.

It's possible to use direct indexing or indexing using other variable.

You can also access variable without any index specification (without "[..]"), the funTEST the looks the
variable like a single value with "| " separators.

Indexing

Array indexing is always zero-based: first element is at index 0.

Index offsets

You can also use offset while specifying index, the offset can also be a variable and can be negative (using "-"

Rev. 2022.10.10 25 FPC s.r.o. 2022

funTEST Programmer's Manual

sign) or positive ("+").

variable-name[index{+/-offset}]

Examples

Array[2] - access element at index 2

Array[1] - access element at index, defined by variable "i", the contents of variable must be an integer
number >= 0

Array[i+1] - access element at index, defined by variable "i", adding offset 1

Array[i-off] -access element at index, defined by variable "i", subtracting offset, defined by variable
of £"

6.2.4 Commands
6.2.4.1 #cnt (Counter operations)

#cnt | <counter>

#cnt | <counter>=<value>
#cnt | <counter>+<offset>
#cnt | <counter>-<offset>

Set counter value, increment or decrement counter by a value or only read current counter value. Multiple
counter operations can be done at once - use a semicolon ";" or doublecolon ":" to separate each counter
operation. In this case, the result is the value of first operation.

Parameters

counter [string] Variable name to be used like a counter. Must be defined in
test-file.

value [number] Integer value for variable.

offset [number] Integer value to be added to or substracted from specified
counter.

Return value

Result value of specified counter.

Examples

#cnt | ok
This will only return value of counter "ok".

#cnt | ok=0
Set "ok" counter value to 0.

#cnt | ok+3
Increment "ok" counter by 3.

#cnt | ok-1
Decrement "ok" counter by 1.

#cnt | pkg=25: 0k=0: ng=0
Set "pkg" counter to 25 and "ok", "ng" counters to zero. Return value in this case is 25.

#cnt | pos[3]+1
Incerement element at index 3 by +1 of array-variable "pos".

Rev. 2022.10.10 26 FPC s.r.o. 2022

funTEST Programmer's Manual

6.2.4.2 #var (Variable operations)

#var | s:<var0>=<valueo>{:<var1>=<valuel>}...{:<varN>=<valuekﬂ
#var | st: <var >=<value >{: <var >=<value >}...{:<var >=<value >}
#var | a:<var0>=<valueo>{:<var1>=<valuel>}...{:<varN>=<valuekﬂ
#var | r: <var >{: <var,>}...{: <var >}
#var | c:<var>{:<var >}...{:<var>}

Operations with defines variables in the test-file:

s - set variable(s) value(s)

st - set variables(s) value(s), forced text

a - append value(s) to specified variable(s)
r - read values of specified variables

c - clear values of specified variables

Variables shown on the operator's screen are updated automatically when changed on each test-program

step.
Parameters
var, -or-var [index] [string] Variable name for single variables or variable name and
index for arrays. Must be defined in test-file.
value [string] String value to set (s, st) or append (a) to the variable or

array's element at specified index.

By default, the OpenOffice will try to understand to the value
like a number. There is a limitation in 15 valid digits, which
OpenOffice can store (double precision number).

If you need to force any value to a variable like a text, use
the st (set text) command.

Return value

e s, st - value of the first passed variable

¢ a - final string of the first passed variable
¢ r - merged string of variables to read

e c - no return value

Examples

#var | s:text="abc"
Set value of "text" variable to "abc", return value will be "abc"

#var | s:text="abc":str="def"
Mutliple variable set at once - variable "text" to "abc" and var "str" to "def'. Return value will be "abc"

#var | r:text:str
Read variables "text" and "str", return will be for example "abcdef' (according to previous example call)

#var | c:textistr:arr[5]
Clear "text" and "str" variables and element with index 5 of "arr" array variable.

#var | a:text="123"
Append the string "123" to the variable "text"

#var | s:arr[5]="123"
Set the element with index 5 of array-variable "arr" to "123"

Rev. 2022.10.10 27 FPC s.r.o. 2022

funTEST Programmer's Manual

#var | s:arr[i]="abc"

Set variable element at index, defined by variable "i" to "abc".
#var | arr:ror:<var >{:<var > ...:<var >}
#var | arr:rol:<var0>{:<var1>:...:<varﬁﬂ

Rotate elements in array variable to right (ror) or left (rol). The length of array remains the same.

Parameters

var [string] Variable(s) to rotate, the variable must be an array-type.

Return value

No return value

Example

For example, let's have a simple array variable with name "fields":
l 1a | 20 | 3¢ | 4d |

#var | arr:ror: fields
Rotate elements to right, by 1:
| 4d | 1a | 20 | 3c

#var | arr:rol: fields
Rotate elements to left, by 1:
| 20 | 3c | 4d | 1a |

#var | arr:ror:arrayl:array?
Rotate two arrays at once

#var | arr: set: <var>: <value>{:size=[int]}

Rotate elements in array variable to right (ror) or left (rol). The length of array remains the same.

Parameters

var [string] Variable to fill by a value, the variable must be an array-type.

size [int] Optional size, when the target variable is variable-length type.
For fixed-length arrays the argument is ignored.

value [string] Value to fill the array.

Return value

No return value

Example

#var | arr:set: numbers:"0"
Set all elements of numbers array to "0".

6.3 Interrupt events

The test-file supports events, automatically raised by funTEST while specified action occurs. These events are
defined like a sub-programs with special label names and format:
*event(event-type{: args})

Rev. 2022.10.10 28 FPC s.r.o. 2022

funTEST Programmer's Manual

event-type [string] Event type to catch, see following section for supported events.
args [string] Optional arguments to specific event types.
Examples

*event(prj-closed)
Catch the project-closing event, no arguments.

*event(run-every: 15m)
Setup the event, which will run automatically every 15 minutes (defined by "15m" argument).

Event sub-programs acts like standard asynchronously called methods (by funTEST), they can have passed

some argument and must have a #return. Make sure that defined event is outside the main program
loop. Recommended location is at the end of the test-file.

6.3.1 Eventtypes
6.3.1.1 prj-closing (Project closing)

prj-closing
Occurs before the test-file is closed. The closing can be refused by the #return argument.

Return argument

0 = refuse closing of test, continue normally
(otherwise) = finish closing

6.3.1.2 prj-closed (Project closed)

prj-closed
Occurs after test-file has been closed. Any GUI (Operator interface) command is denied here.

6.3.1.3 oper-changed (Operator changed)

oper-changed
Occurs after a new user is logged in (when another user is already logged in).

Return value

New logged-in user name will appears in the "Return value" column.

6.3.1.4 run-at (Run at specified time)

run-at: <hour>{: <min>{: <sec>}})

This label will be called by funTEST at specified time in a day. Call is repeated every day at this time. The
time can be specified by hour only or also by minutes and seconds.

Parameters

hour [int] Hour to run, 0 .. 23

min [int] Min to run, 0..59
Default: 0

sec [int] Sec to run, 0..59
Default: 0

Rev. 2022.10.10 29 FPC s.r.o. 2022

funTEST

Programmer's Manual

Examples

*event(run-at: 1)

Run at 01:00.

*event(run—-at: 13: 30)

Run at 13:30.

*event(run-at:15:10: 30)

Run at 15:10:30.

6.3.1.5 run-every (Run every interval)

run-every: <ms>{: <sec>{: <min>{: <hour>}}1})

This label will be called by funTEST repeatedly, after specified interval elapses. Time is defined by a sum of all
parameters. It is possible to define the interval for example by only one parameter - passing i.e. 150 seconds
is equivalent to 2 minutes and 30 seconds and so on. The next call is ignored when previous call is not

finished.
Parameters
ms [int]
sec [int]
min [int]
hour [int]
Examples

*event(run-every: 5)
Run every 0,5 second.

*event(run-every: 0: 30)
Run every 30 second.

*event(run-every: 0: 90)
Run every 1,5 minute.

*event(run-every: 0: 30: 1)

Run every 1,5 minute.

*event(run-every: 0: 0: 60)

Run every 1 hour.

*event(run-every: 0: 0: 0: 1)

hundreths of ms (1 = 100ms)
seconds

minutes

hours

The same 1 hour, but using alternative declaration.

run-every: <interval>

The same functionality, but using simplified interval declaration.

Parameters

interval [string]

One of following notations can be used:
e Nms - number of milliseconds

e Ns - number of seconds

® Nm - number of minutes

e Nh - number of hours

Rev. 2022.10.10

30 FPC s.r.o. 2022

funTEST Programmer's Manual

..where "N" is an integer number and "ms/s/m/h" is suffix

Examples

*event(run-every: 10s)
Run every 10 second.

*event(run-every: 15m)
Run every 15 minute.

*event(run-every: 60m)
Run every 1 hour.

*event(run-every: 1h)
Run every 1 hour, but using alternative declaration.

6.4 Commands
6.4.1 Syntax

FunTEST has a set of dedicated commands to control the program flow.

In this chapter the specified syntax of command usage descriptions and data-types will be described.

Basics

Every command is divided into two parts:

e main command - column "Command (Device)" in the test-file
e parameters - column "Parameters”

In this manual, the main command and parameters are separated by a pipe-character - "|".

Example:
#retclear | from=@this+l; to=@this+10

...where "#retclear" is the main command and "from=@this+1; to=@this+10" are parameters.

Syntax

#command | sub-command: required=[type]{;optional=[typel};
<required-value-only>{; <optional-value-only>}

Symbols:

< > - value-only parameter
{ } - optional
[] -datatype

Description:

#command - main command

sub-command - optional sub-command, must be separated by a colon (":") from parameters
required - required named parameter

optional - optional named parameter

<required-value-only> - required value-only parameter

<optional-value-only> - optional value-only parameter

[type] - parameter value type, see section "Value types" below

Rev. 2022.10.10 31 FPC s.r.o. 2022

funTEST Programmer's Manual

Example, minimum length:

#command | sub-command: required="abc";"123"

Example, maximum length:

#command | sub-command: required="abc"; optional="def";"123";"456"

Parameters

Command parameters must be also written in a specific format.

It distinguishes several types:

e sub-command
For example: "panel: 0", where the "panel" is a sub-command. Sub-command (if present) must always be
at first place in the sequence and no more than once. If any named or value-only parameter follows, they are
separated by a colon from sub-command.

* named parameter (value name + its value)
For example: "from=@this+1; to=@this+10", where "from" and "to" are names of parameters and
@this+1 and @this+10 are parameter values. Parameters are separated by a semicolon.

¢ value-only parameter
For example: "abc; 123;"d e f"". Value-only parameters are also separated by a semicolon.

Parameter types can be combined. In the parameters sequence can be up to one sub-command and unlimited
number of named and value-only parameters.

For example: set: value=5; "abc"; "def" ("set" is sub-command, "value=5" is named parameter and
"abc" and "def" are value-only parameters).

Parameter value format:

Parameter value can be passed using quotes. Quotes are recommended when spaces in the value are
present. They are required when you need to use special characters in the parameter value like colon or
semicolon, which are reserved for separating parameters.

For example, to pass a value containing a semicolon-separated text values, you hawe to type:
set: value="abc; def; ghi"

Escape sequences

When you need to pass for example a non-ASCII character, quote or a back-slash character, you hawve to use
escape sequences. Escape sequence is a sub-string begins with the back-slash character (\) following a
specified number of characters. Escape sequence can substitute any ASCII or non-ASCI value.

Example:
set: value="\"abc\";\\def\\; ghi\r\n"

When you split the value parameter text by semicolons, you will get following three five-character long strings:
° Ilabcll

e \def\

e ghi + ASCIl character 13 (CR) + ASCII character 10 (LF)

There is no other way how to pass these characters without using escape sequences.

Supported sequences:

e \" - quote character
¢ \\ - back-slash character
e \r - carriage return (CR) character, ASCII 13, mostly used like line-ending character

Rev. 2022.10.10 32 FPC s.r.o. 2022

funTEST

Programmer's Manual

¢ \n - line feed (LF) character, ASCII 10, mostly used like line-ending character
* \xYY - where YY is a hexadecimal notation 00 to FF, it can represent any character value, case insensitive

Value types

Parameter value (of named or value-only parameter) is always a plain text. Many commands require this text
special-formatted to represent for example an integer number, boolean value and etc. See all value types in

the table below.
Value type

[string]

[number]

[bool]

[enum]

[list]

[color]

Valid values
(text)

-2147483648 t02147483647
* False ="0", "no", "false"
e True="1", "yes","

List of specific values

true"

vall, valz, Val3, ey valN

® RGB

® RRGGBB

® {dark- | dark-dark- |
light- | light-light-}

<color-name> -0r-gray-XX

Description

Plain test, "funTEST system" for example.
32-bit integer signed number with specified range.
Boolean (logical) value.

An enumeration, it is almost the same like [string], but
only specified values are allowed. For example, defined
values of enumeration are "one", "two" and "three" -
that means this enum-type parameter can contain only
one of these 3 options)

Simple comma-separated value list ("abc,123,+-/" for

example).

Color notation. HTML-like style without a sharp (#)

character. The value can be a 3-character (format

"RGB"), 6-characters length (format "RRGGBB") or

color name (see the list below).

e "RGB" short-format: R, G and B are hexadecimal
notations in range from "0" to "F", case insensitive
(for example: "000" = black, "FFF" = white, "OFQ" =
green, ...)

e "RRGGBB" full-format: RR, GG and BB are
hexadecimal notations in rage from "00" to "FF",
case insensitive (for example "000000" = black,
"FFFFFF" = white, "O0FF00" = green, ...)

¢ Color-name
There are 10 standard named colors: black,
white, red, green, blue,
magenta, orange andgray
Any color except "black" and "white" can be
darkened or lighten by prefixes:
"light-"-or-"light-1ight-" (light/more light)
"dark-" -or- "dark-dark-" (dark/more dark)

Gray level can also be defined by format "Gray-xx",
where XXis the level of lightness in % in range from

01 (almost black) to 99 (almost white)

Black
| | white

I
_:l Green
[IEEmS
BT Jveliow
EN [
_:l Magenta
BN o
EE Gy
BT (.01 toGray-99

yellow, cyan,

Rev. 2022.10.10

33 FPC s.r.o. 2022

funTEST Programmer's Manual

[time] ® s Time notation, defined formats:
®s. f e Seconds only: "s", where "s" are seconds
® m:ss (number from 0 to 59, one or two-digit)
® m:ss. f e Seconds with tenth fraction: "s. £", where "f* are
tenth of second - number from 0 to 9. For example:
"37.8"

® Minutes and seconds: "m: ss", where "m" are
minutes (number from 0 to 59) and "ss" seconds
(must be two-digit). For example: "12: 06"

* Minutes, seconds and tenth of seconds: "m: ss. £",
for example: "8: 09. 7"

Rev. 2022.10.10 34 FPC s.r.o. 2022

funTEST

Programmer's Manual

6.4.2 Summary

Alphabetical sorted list of all available commands.

® fadjust

® fasync

® fasyncflag
* ket

® #call

® #callasync
® #catch

® #catchio

® #cellcopy
® fcellerase
® §cellread
® fcellwrite
* ¥cnt

* kdlg

® #dummy

® fexport

® fextprocess
® #file

* ¥aet

® #goto

® #local

® #login

® #msg

® fonerror

® #onfail

® #oninput

® #panel

® fprint

® #resultlist
® #retclear

® §return

® #stat

® istatrec
® §statsave
® #status

® #stopwatch
* ¥str

® #sync

® ftestfile
® #throw

® fuserbtn
* tvar

® TO commands
® MX commands

6.4.3 Flow control
6.4.3.1 #goto (Jump to label)

#goto | <label-name>

Rev. 2022.10.10

35

FPC s.r.o. 2022

funTEST

Programmer's Manual

Jump to a target label.

Parameters

label-name [string]

Return value

No return value.

6.4.3.2 #call (Call a function)

#call | <function-name>{: <paramg >:

Target label name to jump to.

There is a special predefined label @ this which represent
current row. This can be used to make the infinite main loop
without defining any other label.

Call a function. Function is a block of code begins by the label and ends by the #return (or #throw) command.
Typically the block should be placed outside the main program loop. The #call blocks the executing until sub-
routine is finished. The return value (#return of sub-routine) is written to Return Value.

Starting funTEST version 1.0.1906.311 multiple parameters are supported. Previous versions support param,

only.

Parameters

function-name [string]
param [string]

Return value

Function name to call

Optional parameter(s) to pass to target function. This parameter
(s) will be stored to the "Return Value" of the called function. If
there is more than one parameter, they will be stored to
following lines, one parameter to one line, overwriting previous
values. Line(s) with parameters name should be set to non-
execute, otherwise the parameter(s) in the "Return Value" will
be overwritten by a command after step is executed.

Default: (empty)

Return value is defined by the #return command of the target function block.

6.4.3.3 #return (Return from function)

#return | {<return-value>}

This command represents the end of the function block.

Parameters

return-value [string]

Return value

No return value.

Optional parameter, function can return a blank value.
Otherwise this is any value to be returned by a function block.
Default: (empty)

Rev. 2022.10.10

36 FPC s.r.o. 2022

funTEST Programmer's Manual

6.4.3.4 #throw (Exit function with error)
Request funTEST version: 1.0.1906.311

#throw | {<message>}

Return from function with an error. This will cause ReturnStatus = 1 at the place of function calling (using
#call). If the async-called function is existed by #throw, the error is passed to #sync function. It is possible to
return custom error message or pass last catched error by #onerror functionality.

Parameters

message [string] Optional error message to return from the function. If no
message is passed, the #throw command will return last error,
catched by #onerror functionality.

Return value

No return value.

Examples

#throw | "Barcode reader error!"
Exit the function with custom error message.

#throw
Exit the function with last error, catched from previously set #onerror.

6.4.3.5 #onerror, #onfail (Check for error or fail)

These commands enables to check for an error (means Return Status <> 0) or fail (means Judge is not empty
and <> 0).

Note:
On-fail action is not executed when the step ends with an error. If you want to treat both situation, you have to
define behaviour for both on-fail and on-error (can be the same).

It is possible to:

e just set a number of retries of following step(s)
e perform a function call

¢ go to to a specified label

#onerror / #onfail | none

Disable the error or fail checking functionality.

#onerror / #onfail | retry: <count>

Set number of retries. The funTEST will repeat the line, where an error or fail occurs several times before
proceeding.

Parameters

count [int] Set the number of repeats. Must be a positive number. "0"
means no repeats.

Return value

No return value.

Rev. 2022.10.10 37 FPC s.r.o. 2022

funTEST Programmer's Manual

Examples
#onerror | retry:3
Set the number of retries to 3. That means - if the first will fail, it will be repeated by 3 times (total of 4
calls).
#onerror / #onfail | <command>: <label>{:retry=[int]}

Set number of retries. The funTEST will repeat the line, where an error or fail occurs several times before
proceeding.

Parameters
command [enum] What should be done if error or fail has occurred. It can be on of
these option:
* goto - go to line with a specified label, no return
¢ call - call specified function block, program will return at the
place where an error or fail occured
label [string] Target label to go to or name of function block to call.
Function block must ends with #return command.
retry [int] Optionally the number of retries can be set before go to a label

or call a function block.

Default: O

Return value

No return value.

Examples

#onerror | goto:error
If an error occurs, the funTEST go to a line labeled "error".

#onerror | goto:error:retry=3
If an error occurs the current line is repeated by a maximum of 3 times. If not success, then funTEST go
to a line labeled "error".

#onerror | call: error func:retry=3
Almost the same like above. The difference is, that the function is called there and program will continue
from the line where an error has occurred.

6.4.4 Operator interface
6.4.4.1 #msg (Show a message)

#msg | {<text>}{; type=[enum string]}{;size=[enum]}{;image=[string]}
{;color=[color]}{;bg=[color]}{;tsize=[int]}{; tpos=[enum]}

Show a formatted message on operator screen.

Parameters

text [string] Text to display.
If test-file localization is loaded, the text is automatically
translated.

type [enum | string] Message type and text position if both displayed.

Rev. 2022.10.10 38 FPC s.r.o. 2022

funTEST

Programmer's Manual

size

image

color

bg

tsize

tpos

[enum]

[string]

[color]
[color]
[int]

[enum]

® auto - determine the type based on 'text' and 'image’
arguments (‘text' only = type text, 'image' only = type image,
both 'text' and 'image' = both)

Or'

® im or image - show image

® t ortext - show text in default position

e tt - show text on the top

® tb - show text on the bottom

e t1 -show text on the left side

e tr - show text on the right side

Type is a combination of 1 - 2 type string abowe, using plus '+'
character, i.e.:

"im" (image only), "im+t" (image and text), "im+tt" (image
and text on top)

Default: auto

Message size (area of operator screen):

e tiny - small box for 1-2 lines of text

® medium - medium-sized box, about one-half of the operator
screen

e large - full-screen message on operator screen (excluding
top and right-side menus)

Default: tiny

Image to display.

Required when type is specified to display an image.
Supported image formats: JPEG, PNG, GIF and BMP

¢ path to file on a hard-drive (i.e. "c: \ path\to\image. png")
e device plug-ins from version 2.0: "plugin: //<device-
alias>"

When image source is set to plug-in, the plug-in can render
custom image to the operator's screen independently.

Default: (none)

Color of message text.

Default: black

Color of message background.

Default: white

Text size in points.

Default: 24

Possibility to specify position of the text when 'type' argument
is not used or set to 'auto’ and both image and text are
displayed.

Valid positions:

e top (above the image)

® bottom (below the image)

® left

® right

If the 'type' argument is specified, this argument is ignored.

Default: bottom

Rev. 2022.10.10

39 FPC s.r.o. 2022

funTEST Programmer's Manual

Return value

No return value.

Examples

#msg | "Simple message to show..."
Display a simple tiny message with text specified above.

#msg | "Message to show...";size=medium; tsize=40; image="c: \\path\\to\
\imagel. jpg"; color=light-red

Display medium-sized message with a light-red colored text and image specified by path and text below
of image. Set the text-size to 40pt (default is 24).

#msg | size=large; image="c: \\path\\to\\image2. png"; bg=black
Display a full-screen image only with black background.

#msg | "Text left of the image";size=medium; tpos=left; image="c: \\path\\to\
\image2. png"
Display a medium-sized message with text aligned to left side.

#msg | "Text left of the image";size=medium; type="im+tl"; image="c: \\path\
\to\\image2. png"

Display a medium-sized message with text aligned to left side (an alternative to writing above using exact
specification by 'type' argument).

#msg | size=large; image="plugin: //Remote"
Display a full-screen image and allow the plug-in with alias "Remote" to send the image directly to
operator's interface.

#msg | push

Sawe last shown message (including all parameters) to memory. This commands requires any previously
shown message. The memory is shared across all threads - the message can be stored in one thread and
restored in another thread.

fmsg | pop

Restore last saved message from the memory. This commands requires previously saved message using
push. Calling this command will not delete the saved message, so it's possible to call it repeatedly.

The push and pop commands gives the opportunity to the programmer to temporary show other message and
the easily restore the previous message.

6.4.4.2 #dig (Show a dialog)

#dlg | <text>{; type=[enum string]}{; w=[number]}{; h=[number]}{; image=[string]}
{;color=[color]}{;bg=[color]}{;tsize=[number]}{;items=[list]}
{;edit=[bool]}{;input-text=[string]}{;input-mask=[bool]}{;buttons=[list]}
{;tpos=[enum] } {; iomap=[1list]}

Show an owerlay dialog with formatted message on operator screen. This function blocks executing the
program until one of dialog button is pressed or item is selected.

Parameters

text [string] Text to display.
If test-file localization is loaded, the text is automatically
translated.

Rev. 2022.10.10 40 FPC s.r.o. 2022

funTEST Programmer's Manual

type [enum | string] Message type and text position if both displayed:

® auto - determine the type based on 'text' and 'image’
arguments (‘text' only = type text, 'image' only = type image,
both 'text' and 'image' = both)

Or'

® im or image - show image

® t ortext - show text in default position

e tt - show text on the top

® tb - show text on the bottom

e t1 -show text on the left side

e tr - show text on the right side

Type is a combination of 1 - 2 type string abowe, using plus '+'
character, i.e.:

"im" (image only), "im+t" (image and text), "im+tt" (image
and text on top)

Default: auto

w [number] Dialog width, percent of operator screen.
Range: 20 - 100
Default: 80

h [number] Dialog height, percent of operator screen.
Range: 20 - 100
Default: 80

image [string] Image to display.
Required when type is specified to display an image.
Supported image formats: JPEG, PNG, GIF and BMP

¢ path to file on a hard-drive (i.e. "c: \path\to\image. png")
e device plug-ins from version 2.0: "plugin: //<device-
alias>"

When image source is set to plug-in, the plug-in can render
custom image to the operator's screen independently.

Default: (none)
color [color] Color of message text.
Default: black
bg [color] Color of message background.
Default: white
tsize [number] Text size in points.
Default: 24
tpos [enum] Possibility to specify position of the text when 'type' argument
is not used or set to 'auto’ and both image and text are
displayed.
Valid positions:
e top (abowe the image)
* bottom (below the image)
® left
® right

If the 'type' argument is specified, this argument is ignored.
Default: bottom

items [list] A comma-separated list of text items. One of them can be
selected in the dialog.

Rev. 2022.10.10 41 FPC s.r.o. 2022

funTEST Programmer's Manual

When no buttons, text and image is passed, the result is the
dialog with only the list of items to select.
Default: (none)

edit [bool] If true, the edit-box is shown on the dialog.
Default: false

input-text [string] The default text to be prepared in the edit-box.

input-mask [bool] Mask the text by a standard system password character.
Default: false

buttons [list] A comma-separated list of buttons to show.
Possible values are:
® ok
® cancel
® yes
® no
® retry
If edit box is shown or item values to select are passed, the
"ok" button should be shown, because it confirms the typed
text.
Default: ok (if no items and iomap are passed, otherwise no
button is shown)

iomap [list] Mapping buttons to specified IO (inputs only) aliases from
teststation's IO mapping system.
Comma-separated list in following possible formats:
¢ Inputs aliases only: in

button(0) lnbutton(l)’ e L1

(buttons to pair depends equals to order in the buttons
argument)

Or

* Specified button(s) to specified alias(es): io >button , in,

button(N)

>putton,, ..., in >button (buttons are paired to inputs

directly)
Or
e Combination of both formats: 1N im0y 1 Mputeon(1) 195

>button,, .., in>button (first two buttons are paired by

buttons argument position and others are directly paired)
Default: (none)

Return value

If no items are passed to the dialog and no edit-box is shown, the return value is the name of button
pressed with a "@" character at first place ("@ok", "@cancel", "@retry", etc..). Otherwise, the retun
value is the selected item or user-entered text.

Examples

#dlg | "Simple dialog to confirm..."
Show a simple confirmation dialog with one button - "OK". Return value will be always "@ok".

#dlg | "Select an item"; w=100; h=100; items="one, two, three, four, five"
Show a full-screen dialog (width and height is 100%) to select one of predefined items. Return value will be
one of the items.

#dlg | "Enter your name:"; w=70; h=50; edit=true
Show a dialog with an edit-box. Return value will be the entered text.

#dlg | "Do you want to continue testing?"; buttons=no, yes
Show a dialog with a simple text and "No" and "Yes" button. The order of buttons in the bottom-right

Rev. 2022.10.10 42 FPC s.r.o. 2022

funTEST Programmer's Manual

corner will be in order - "No", "Yes".

#dlg | items="First, Second, Third"
Show a dialog with only list of items to choose. No prompt, image and button bar is displayed.

#dlg | "IO paired dialog"; buttons="ok, cancel”;iomap="start, stop"
Show a dialog with two buttons and map OK button to "start” IO alias and Cancel button to "stop" alias

#dlg | "IO paired dialog"; buttons="ok,cancel";iomap="start, stop, reject>no"
Show a dialog with two buttons and map OK button to "start” IO alias, Cancel button to "stop" alias and
(not shown) No button to "reject” alias

#dlg | "Only IO can confirm...";iomap="start>ok, stop>cancel"
Show a dialog with a text and buttons. Only specified IO inputs can confirm the dialog, in this case "start"
alias works like OK button and "stop" alias works like Cancel button.

6.4.4.3 #status (Set test status of current panel)

#status | {<status>}{:panel=[list]}{:color=[color]}
Control status label of current or specified panel(s).

Parameters

status [string] Status custom text of current panel or one of predefined values
below:
® @ready - Ready/In queue
® @pass - Test passed
e @fail - Test failed
® @test - Testing in progress
Default: no text

panel [list] Specify panel(s) to change status label at once. Format:
comma separated panel numbers or asterisk (*) to select all
existing panels.
Default: current panel

color [color] Background color of specified panel when the custom text is
used. The "@ready/pass/fail/test" will have always fixed colors
(gray/green/red/yellow).
Default: light-yellow

Return value

No return value.

Examples

#status | @pass
Set status of current panel to "passed".

#status | @ready: panel=*
Set "ready" status for all panels.

#status | @test: panel=l1, 3,4
Set "test" status for selected panels.

#status | "Processing...":color=light-blue
Set custom status text of current panel to "Processing..." with light blue background color.

Rev. 2022.10.10 43 FPC s.r.o. 2022

funTEST

Programmer's Manual

#status

panel=4: color=blue

Set panel's 4 color to blue, without any text.

6.4.4.4 #resultlist (Result list operations)

#resultlist

clear{: panel=[int]}

Clear all results or if panel parameter specified, clear selected panel's results only.

Parameters

panel [number]

Return value

No return value.
#resultlist | showerrors
#resultlist | showall

Show only error results or all results.

Specify of which panel's results will be cleared.

Parameters

No parameters.

Return value

No return value.

#resultlist

panel: <panel>

This command allows to set current panel number. Valid numbers must be defined in the test-program.

Parameters

panel

[number] or [enum] An integer number specifying panel number or one of following

Return value

No return value.

#fresultlist

Shows a confirm button on the testing screen.

confirms results.

regconfirm

commands:
¢ all - show all panels in the result list
e current - show currently selected panel in the result list

This function blocks the executing of program until user

Parameters

No parameters.

Return value

No return value.

#resultlist | sort: <type>

Rev. 2022.10.10

FPC s.r.o. 2022

funTEST Programmer's Manual

Sorts current view of result-list. The sorting is not done on-the-fly and must be called manually. Sorting cannot
be reverted, once it's done the previous order cannot be restored.

Parameters

type [enum] Type of sorting, current only one is available:
® FailsOnTop - moves FAILs to the top of the list

Return value

No return value.

6.4.4.5 #panel (Panels control)

#panel | {<panel>}

This command allows to set current panel number. Valid numbers must be defined in the test-program.

Parameters

panel [number] An integer number specifying the current panel number.
If not passed, current panel is not changed. Only currently
selected panel will be returned.

Return value

Number of currently selected panel.

#panel | set{:size=[string]}{: xsize=[number]}{: ysize=[number]}
{: numbering=[string]}{: xdef=[number]} {: ydef=[number] }

Programmatically change the panel configuration while test is running.

Parameters

size [string] Target panel size in format "<columns>x<rows>", e.g. "5x2"
Default: load from test-file HEAD definition

xsize, ysize [number] Target panel size in separated arguments.
Default: load from test-file HEAD definition

numbering [string] Target panel numbering:
e Custom numbers format: columns separated by "," and rows

by ;"
(e.9."1,3,2;4,6,5" =2rows/3 columns)
The number of rows and columns must match to size (or
xsizelysize) argument.
® byrow: auto-numbering by rows
1 2 |13
4 1 516
71819
® bycol: auto-numbering by columns
1 4 | 7
2 | 5[8
3169
Default: load from PANEL definition
xdef, ydef [number] Load definition from PANEL sheet at xdef/ydef offset.
Default: load from PANEL definition

Rev. 2022.10.10 45 FPC s.r.o. 2022

funTEST

Programmer's Manual

Return value

Number of currently selected panel.

6.4.4.6 #stopwatch (Integrated stopwatch control)

Using this command you can show/hide/start/stop/reset and set parameters of integrated stop-watch system.
Stop-watch can be shown on the operator screen, or run in the background to measure the testing cycle time.

#stopwatch | show
#stopwatch | hide

Show or hide the stop-watch on the operator's screen.

Parameters

No parameters.

Return value

No return value.

#stopwatch | start:{show=[bool]}
#stopwatch | stop: { hide=[bool]}
#stopwatch | reset

Run, stop or reset stopwatch. Optionally the stop-watch can be automatically show/hide on the operator
screen by using start/stop commands. Reset command sets the default time of stopwatch - to zero in normal
mode and to time limit in the countdown mode.

Parameters

show

hide

Return value

No return value.

[bool]

[bool]

If true, stopwatch are automatically displayed on the operator
screen using the start command.

Default: false

If true, stopwatch are automatically hidden using the stop
command.

#stopwatch | set:{fmt=[string]}{;cntdown=[bool]}{;limit=[time]}

Set parameters of stop-watch like operator screen display format, mode and time-limit.

Parameters

fmt

[string]

Set the time display format of stopwatch on the operator

screen. You can build your own style using these basic custom

format specifiers below:

® h, hh - hour without or with the leading zero if one-digit only

e m, mm - minute without or with the leading zero

e £, ff, fff -tenths, hundredths of second or milliseconds,
always with leading zero(s)

Delimiter characters like dot "', color "' and others must be
escaped using the backslash character \\'. It is possible to
include any custom string using the literal delimiter -

Rev. 2022.10.10

46 FPC s.ro. 2022

funTEST Programmer's Manual

apostrophe (for example 'min’) at any place of the string. Any
other unescaped character, or character not between 'is
interpreted as a custom format specifier.

The default format can be set by "default" keyword.

Default:"m' min, 'ss' sec'" ("0 min, 00 sec")
cntdown [bool] Mode of stop-watch:

® false - normal mode (upcounting)

® true - countdown mode

To change stop-watch mode is not possible when running.

Default: false

limit [time] The time limit. This is only for operator screen. If an overtime
occurred, time stopwatch color on the operator screen
becomes red.
No limit can be set by "none" keyword.
Default: none (no time limit)

Return value

No return value.

Examples

fstopwatch | set:fmt=""'"- 'm' min, 'ss\\.f' sec'";cntdown=true;limit="1:15"
Set display format styleto"- x min, yy.z sec" (for example "- 0 min, 56.2 sec"), countdown mode
and time limit to 1 minute and 15 seconds.

#stopwatch | set: fmt=default; cntdown=false; limit=none
Restore default display format, set normal mode (upcounting) and no time limit.

#stopwatch | time?:{<value-type>}
#stopwatch | time?:{fmt=[string]}

Read current value of stop-watch.

Parameters

value-type [enum] Get current time of stopwatch in one of following unit:
* msec -or- ms: total number of milliseconds (integer number)
® sec -or- s: total number of seconds (decimal)
® min -or- m: total number of minutes (decimal)
® hour -or- h: total number of hours (decimal)
fmt [string] Get current time of stopwatch in specified format. The
formatting string is almost the same as for the "set" command
(except the default keyword).
Short summary:
® h, hh -hours
® m, mm - minutes
® s, ss -seconds
e £, f£f, f£ff -1/10, 1/100 or 1/1000 of second

It is possible to get full time representation or for example only
second or minute part of time and so on.

Rev. 2022.10.10 47 FPC s.r.o. 2022

funTEST Programmer's Manual

Default: "mm\: ss\. £" (for example "02: 31. 7" = 2 minutes,
31.7 seconds)

limit [time] The time limit. This is only for operator screen. If an overtime
occurred, time stopwatch color on the operator screen
becomes red.
No limit can be set by "none" keyword.

Default: none (no time limit)

Return value

Return value depends on variant of a command used - means if <value-type> or fmt argument is
used.

a) value-type used - return value is integer or decimal, total number of msec -or- sec -or- min -or-
hour, decimal notation if needed

b) fmt used - return value is a time in specified format, by default in "mm: ss. £" format (minutes, seconds
and tenth of seconds)

Only one argument can be used at the same time. If both, the value-type has a priority. If none, the
fmt default format is used.

If the countdown is active and the time is below zero (= over limit), the value starts by negative "-" sign.

Examples

The following examples expecting current time of stopwatch for example "2: 25. 3" (2 min, 25 sec, 300
msec).

#stopwatch | time?
Get current time in the default format. Return value will be: "2: 25. 3"

#stopwatch | time?: sec
Get total number of seconds. Return value will be: 2*60+25+0.3 = "145. 3"

#stopwatch | time?: fmt="ss"
Get the second part of time, tow-digit format. Return value will be: "25"

6.4.4.7 #userbtn (User-button control)

This command enables to add/modify/remove the user button(s) on operator's interface sidebar. Click the
button performs the asynchronous function call to the specified label.

#userbtn | add: <id>; call=[stringl{;param=[stringl}{;caption=[string]}
{;enabled=[bool]}{; image=[path]}

Add a new user-button with a specified ID and parameters.

#userbtn | set: <ido>{ 5 <idl>} 000l <idN>} {; param=[string]}{; caption=[string]}
{;enabled=[bool]}{; image=[path]}

Modify parameter(s) of the existing user-button with specified ID. If the ID is *, the parameters are passed to
the all buttons.

#userbtn | remove: <id>{i<id;>}...{;<idp>}

Remove the existing user-button with specified ID. Use * as ID to remowve all existing buttons.

Rev. 2022.10.10 48 FPC s.r.o. 2022

funTEST Programmer's Manual

Parameters

id -or- id, [string] The unique ID(s) of the button(s). ID is used to identificate the
button in another functions.
An asterisk (*) used like an ID identificates all existing buttons -
this cannot be used when adding buttons.

call [string] Target label of the function which will be asynchronously called
by clicking the specified button.

param [string] Optional parameter to pass to the target function. If exists, the
value will be written in to the "Return Value" column on the line,
where the function label is declared.

caption [string] Caption of the button. This parameter is not required, but
recommended.

enabled [bool] If true, the button is disabled, if false the button is disabled.
Default: false

image [path] Picture of the button. This parameter is not required, but

recommended. Source picture can be in the PNG/JPEG/BMP/
GIF format, highly-recommended is the PNG format with the
resolution of 64x64 pixels.

Return value

No return value.

Notes

Once the function is called, it is not possible to call it again until it finishes, otherwise an error message is
thrown. It's recommended to disable the button using the set:<id>;enabled=false command immediately
after asynchronous function is called and enable the button at the end of the function. The error message
is shown also in the case, that the target label does not exist

Examples

#userbtn | add: print-label;call=print-label-event;caption="Print label";
image="$project-dir$\\print-icon-64. png"

Add a new user-button labeled "Print label". The button is identified by ID "print-label" and click the button
calls the "print-label-event" labeled function in the test-file. By default, the operator is not allowed to click
the button (is disabled). The "$project-dir$" is a funTEST's internal variable, which will be replaced by the
directory of currently active project.

#fuserbtn | set: print-label;enabled=true
Enable the "print-label" button - the operator is allowed to click the button.

#userbtn | add: manual-release;call=manual-release-event; caption="Release";
enabled=true; image="$project-dir$\\release-icon-64. png"
Add another user-button labeled "Release" with ID "manual-release”.

#userbtn | set:*;enabled=false
Disable all user-buttons. An asterisk (*) used like an ID selects all buttons to modify.

#fuserbtn | set: print-label; manual-release; enabled=false
Disable two specified buttons: "print-label" and "manual-release".

#userbtn | remove: *
Removwe the all user-buttons from the sidebar.

Rev. 2022.10.10 49 FPC s.r.o. 2022

funTEST Programmer's Manual

6.4.4.8 #adjust (Value adjust dialog)

#adjust | goto| call: <label-name>{: value=[number]}: title=[string]{: msg=[string]}
{:img=[string]}{:unit=[stringl}{: valuefmt=[string]}
{:1lolim=[number]}{: hilim=[number]}{: lorange=[number]: hirange=[number] }
{: passcnt=[int]}{: timeout=[int]}

The #adjust commands enables to automatically repeat the measurement until the value fits between specified
limits. While measuring, the value is shown using the operator interface:

Test
Measuring
2,85 3,15 3,45 3,75
Minimal: 3,30 [V] Actual value: 3,32 [V] Maximal: 3,35 [V]
1

#adjust command dialog

There are two ways how to use the #adjust functionality:

¢ goto: repeatedly jump to the measurement section until pass the condition, the measurement value must
be linked like an argument

¢ call: repeatedly calls the sub-routine and uses its return value until pass the condition (automatically jumps
back to itself)

goto
Typical usage:
Label Return Command Arguments
value
measure 3.32 MultimeterDevice meas: volt?
#adjust goto: measure: title="Test": value=3. 32:...

® sequence starts by a section, which proceed a measurement (plus some calculations, value conversion,
and etc.)

¢ this section must have a label defined

e after this section follows the #adjust command, which is linked to the specified label and measured (or
calculated) value

¢ the #adjust command automatically jumps to measurement section repeatedly, until the measured value is
not between specified limits, or timeout occurs

¢ while the measurement is in progress, the dialog above is displayed and shows the value in real-time

¢ when the measure value is between limits for a number of following measurements, the #adjust command is
done and program continues

call
Typical usage:
Label Return Command Arguments
value
#adjust call: measure: title="Test":...
measure 3.32 MultimeterDevice meas: volt?
#return 3.32

* the measurement section is outside the main loop (typically after end of test-program), defined like a sub-
routine with #return, this routine proceed a measurement and nested calculations
e this section must ends with #return with measured value, which will be passed to calling #adjust

Rev. 2022.10.10 50 FPC s.ro. 2022

funTEST

Programmer's Manual

e anywhere the #adjust call be called, unTEST automatically stays on the line with #adjust and repeatedly

calls the measurement sub-routine

¢ while the measurement is in progress, the dialog above is displayed and shows the value in real-time
¢ when the measure value is between limits for a number of following measurements, the #adjust command is
done and program continues

Parameters

label-name [string]
value [number]
title [string]
msg [string]
img [string]
unit [string]
valuefmt [string]
lolim [number]
hilim

lorange [number]
hirange

passcnt [int]
timeout [int]
Return value

The target-label to jump, when the measurement has to be
repeated.

Linked measured value, can be float with decimal point or
integer number.

The value is required only when the "goto" way is used.
Dialog title text

Optional dialog message (below the title)

Default: (empty)

Path to picture, optional.

Default: (none)

Value unit, optional.

Default: (empty)

Value format string, optional.

Default: 0.00 (two decimal places)

Low a high limit to determine the repeating. Only Iolim or hilim
can be defined (that means - checks value is higher or lower
only). At least one of these limits is required.

Expected range of value used for bar-graph on the dialog. None
of these or both arguments must be passed. If none passed,
the range is determined automatically, based on lolim/hilim.
Default: (auto)

Number of following measurement, which must be inside limit to
close the #adjust function.

Default: 5

Time to wait for number of following mesurements.

Default: O (infinite time)

e "0" - successful (measurement pass the condition until timeout occurs)
e "1" - failed (timeout occurs), also the ReturnStatus is set to "1" (error)

Examples

#adjust

#adjust |

| goto: measure: value=3.32: title="Test": msg="Measuring": uint="V":
lolim=3.15: hilim=3. 45: passcnt=10
Start the adjust function with target-label "measure", passing the "3.32" value, value unit and limits.

none

Manually cancel the #adjust operation and hide the dialog.

Parameters

No parameters.

Return

No return

value

value.

Rev. 2022.10.10

51 FPC s.r.o. 2022

funTEST Programmer's Manual

6.4.5 10
6.4.5.1 #catchio (Wait for a specified 10 device input)
#catchio | cmd=[string];accept=[string] {; accept =[string]; ...;accept =[string]}

{; timeout=[number]}{; interval=[number]} { set-cnt=[number] }

Repetitively send the command to read inputs of IO mapping device and block executing the program until
match the expected value.
When #oninput event occurs, the #catchio will break.

Parameters

cmd [string] Command of funTEST IO mapping device to read specified
inputs. Alias or input numbers can be used, separated by a
colon ":".

accept [string] Return string sequence of IO command to be accepted. The
#catchio command blocks executing the program until one of
these string will match the return value.
Since funTEST wversion 1.0.1912.410 the accept argument
support wild-cards (? for any one charater and * for any number
of charaters).

timeout [number] Time limit in [ms] to wait to pass all accept strings. If the
timeout is reached, the #catchio command return status will be
one and current state of inputs will be returned.
Default: (no timeout)

interval [number] Interval in [ms] between executing of IO commands.
Default: 10 [ms]

set-cnt [number] Needed count of internal iteration before "accept filter" will be
accepted. Interval between iteration is depended on interval
parameter
Default: 1

Return value

Last state of inputs in colon-separated format, i.e. "0:1:1".
Returns BREAK when paused while debugging or #oninput event.

Examples

#catchio | cmd="r:0:2:4";accept="1:1:1"
Read inputs 0, 2 and 4 every 10ms and block program executing until all inputs become logical 1.

#catchio | cmd="r:0:1";accept="1:1": accept="0:0"
Almost the same like before, but more states of inputs are accepted.

#catchio | cmd="r: fixture";accept="0";interval=200
This requires the "fixture" pin alias to be defined. Read the "fixture" input every 200ms and wait until it
becomes a logical 0.

#catchio | cmd="r:active";accept="1";interval=100; timeout=5000

This requires the "active" pin alias to be defined. Read the "active" input every 100ms and wait until it

becomes a logical 1 for a maximum of 5 seconds. If the "active" input will not change to a log. 1 until

timeout is reached, the return status will be set to one and return value to "0" (because of no change).

#catchio | cmd="r:in0:inl: break";accept="1:0:0"; accept="2:2:1"
Wild-card example. This accepts the exact combination of 1:0:0 or any combination with "break" input is
active.

Rev. 2022.10.10 52 FPC s.r.o. 2022

funTEST Programmer's Manual

#catchio | cmd="r:0"; accept="1";interval=100; set-cnt=10"
Read inputs 0 every 100ms and block program executing until all inputs become logical one - ten times in row.

6.4.5.2 #oninput (External input interrupt)

This command controls external input interrupt. Functionality requires IO mapping to be configured with used
inputs enabled. When interrupt is configured, funTEST checks for change of specified input. If there is a
transition on input of configured interrupt, the funTEST will go to a specified label or call a specified function.

More than one interrupt can be set. Each interrupt is identified by its input pin number or alias.
Interrupts are bounded to thread from which they were configured. If specific thread finishes, all
bounded interrupts to this thread are cleared.

#oninput | none
#oninput | disable

Disabled configured interrupts of caller's thread. If this command is executed in the main thread, all
interrupts are disabled (including all another running threads).

#oninput | <command>: <label>: pin=[string/number]: change=[enum]{: single=[bool]}

Configure (or reconfigure) the interrupt of specified pin number or alias.

Parameters

command [enum] What should be done if error or fail has occurred. It can be on of
these option:
¢ goto - go to line with a specified label, no return
e call - asynchronously call specified function block, there is

no blocking of running program

label [string] Target label to go to or name of function block to call.
Function block must ends with #return command.

pin [string] or [number] Input pin number or alias that can cause an extern interrupt.
It must be defined in teststation's 10 mapping.

change [enum] Specify a pin level transition. It can be:

¢ tohigh - a transition from low to high
¢ tolow - a transition from high to low

single [bool] Single-shot option. If true, the configured interrupt is
automatically disabled when first occur.

Return value

No return value.

Examples

#foninput | goto:start: pin=fixture-closed: change=tohigh
This example requires a defined label "start" and input pin with "fixture-closed" alias. If pin value raises
from low to high, funTEST will go to on the label "start".

#foninput | call:stop: pin=force-stop: change=tolow
This example requires a defined function block "stop" and input pin with "force-stop" alias. If pin value falls
from high to low, funTEST will call the "stop" function block.

#oninput | stop{: <in>}...{: <in >}

Stop interrupt for specified input.

Rev. 2022.10.10 53 FPC s.r.o. 2022

funTEST Programmer's Manual
Parameters
in [string] or [number] Input pin number or alias to disable the interrupt.

Return value

No return value.

Examples

#oninput | stop: force-stop
Disable interrupt for the "force-stop" input.

6.4.6 Files
6.4.6.1 #file (File operations)

#file | exists?:<filename>
Checks if specified file exists.

Parameters

filename [string] File-name (full path) to check.

Return value

e "1 " if exists
e "0" if not exists

Examples

#file | exists?:"c:\\tmp\\file. txt"
Checks if "c:\tmp\file.txt" does exist.

#file | size?:<filename>

Check size of specified file.

Parameters

filename [string] File-name to get file-size.

Return value

Size in bytes (number).

Examples

#file | size?:"c:\\tmp\\file. txt"
Returns i.e. 1298 (bytes).

#file | move: <src-filename>: <dst-filename>

Move and/or rename the file.

Rev. 2022.10.10 54

FPC s.r.o. 2022

funTEST Programmer's Manual

Parameters
src-filename [string] Source file-name to be mowved.
dst-filename [string] Destination file-name.

Return value

No return value.

Examples

#file | move:"c: \\tmp\\file. txt":"c:\\file2. txt"
Movwes the file "file.txt" from the c:\tmp directory to root of the c:\ and rename it to "file2.txt"

#file | empty: <filename>
Clear all the content of specified file. If the destination file does not exist, the empty file is created.

Parameters

filename [string] Destination file to be cleared.

Return value

No return value.

Examples

#file | empty:"c:\\tmp\\file. txt"
Clear or create an empty file "c:\tmp\file.txt"

#file | del:<filename>

Delete the file. If the file does not exists, nothing happen.

Parameters

filename [string] Destination file to be deleted.

Return value

No return value.

Examples

#file | del:"c:\\tmp\\file. txt"
Delete file "c:\tmp\file.txt".

6.4.6.1.1 INI files

#file | ini:read: val=[string]{;sec=[string]}{;file=[string]}{;<default>}
#file | ini:write:val=[string]{;sec=[string]}{;file=[string]};<value>

Simplified INI-file access by section and value names.

Parameters
val [string] Value name of specified section to be read or written.
sec [string] Optional section name. If no section is passed, the values are

placed to the default section to start of the INI file without the

Rev. 2022.10.10 55 FPC s.r.o. 2022

funTEST Programmer's Manual

"[SECTION]" specification.

file [string] Optional file name of INI file. If no fname passed, the default INI
file is used - same location and name like the test-file,
accessing the INI file.

default [string] The default value to be return when the INI-ile, specified section
or specified value name does not exist. If no default value is
specified and the value does not exist, the method will return by
Return status = 1.

value [string] The value to be written to specified section/value name.

Return value

When reading from INI by ini:read, the value of specified section/value or default value is returned.

Examples

#file | ini:read: val=Serial: sec=MAIN:"1"
Read value "Serial" from section "MAIN". When does not exist, return "1".

#file | ini:write:val=Serial:sec=MAIN: file="c:\\settings.ini":"2"
Write "2" string to value "Serial" in "MAIN" section. The file specified section/value are created if they do
not exist.

6.4.6.1.2 Text files

#file | text:lines?:file=[string]
Count lines in the source file.

Parameters

file [string] Path to source text-file.

Return value

Number of lines (integer).

Examples

#file | text:lines?:file="c:\\tmp\\file. txt"
Count and return lines of "c:\tmp\file.txt" file.

#file | text:length?: file=[string]

Number of characters in the source file.
This is different to size? command, because the size is byte-oriented and text:length? is character-oriented.

Parameters

file [string] Path to source text-file.

Return value

Number of characters (integer).

Examples

#file | text:length?: file="c:\\tmp\\file. txt"
Return number of characters of "c:\tmp\file.txt" file.

Rev. 2022.10.10 56 FPC s.r.o. 2022

funTEST Programmer's Manual

#file | text:read?: file=[string]
Read all content of specified text-file.

Parameters

file [string] Path to source text-file.

Return value

Content of source file.

Examples

#file | text:read?:file="c:\\tmp\\file. txt"
Return content of "c:\tmpl\file.txt" file.

#file | text:readln?: file=[string]{:1n=[int]}{:expr=[string]}{:expr-last=[string]}

Read specified line of source text file.

Parameters
file [string] Path to source text-file.
1n [int] Index of line to be read (zero-based). If negative, line at the end
is taken (where -1 is the last line).
Default: O (first line)
expr [string] Return first (expr) or last (expr-last) line from text-file matching
expr-last the regular expression.

Default: none (by In arg)

Return value

Specified line of source file. If line does not exists, an empty string is returned.

Examples

#file | text:readln?:file="c:\\tmp\\file. txt":1ln=2
Return 3rd line from the begining of c:\tmp\file.txt

#file | text:readln?:file="c:\\tmp\\file. txt":1ln=-1
Return last line of c:\tmpl\file.txt

#file | text:readln?: file="c:\\tmp\\file. txt":1ln=-2
Return 2rd line from the end of c:\tmp\file.txt

#file | text:readln?:file="c:\\tmp\\file. txt": expr="index[0-9]+"
Return first line which contains "index" and any number (e.g. index0, index29, index 568.. etc)

#file | text:write: <text>: file=[string]
#file | text: append: <text>: file=[string]

#file | text: insert: <text>:file=[string]{:offset=[int]}

Write/append/insert the text to destination file. If writing, the content of the file is overwritten.

Parameters
text [string] Content to write/append/insert to the destination file.
file [string] Path to destination text-file.

Rev. 2022.10.10 57 FPC s.r.o. 2022

funTEST Programmer's Manual

offset [int] Character offset in the file to insert the text. Zero-based.
Default: 0 (beginning of the file)

Return value

No return value.

Examples

#file | text:write:"hello world!":file="c:\\tmp\\file. txt"
Write the string "hello world!" (12 characters) to file c:\tmp\file.txt, overwriting its previous content.

#file | text:append:"end of the file":file="c:\\tmp\\file. txt"
Append the string "end of the file" (15 characters) at the end of the file c:\tmpl\file.txt.

#file | text:insert:"new ":file="c:\\tmp\\file. txt":offset=6
Insert the string "new " (4 characters) to the file c:\tmp\file.txt of the first example, the new content of the
file will be "hello new world!".

#file | text:writeln{:<lineo>:..:<lineN>}:file:[string]
#file | text:appendln{:<line0>:..:<lineN>}:file=[string]
#file | text:insertln{: <line>:..:<line>}:file=[string]{: offset=[int]}

Write/append/insert lines (strings, separated by a system standard new-line delimiter) to destination file. If
writing, the content of the file is overwritten.

Parameters

line,toline [string] Line(s) to write/append/insert to the destination file.
file [string] Path to destination text-file.

offset [int] Line offset in the file to insert lines. Zero-based.

Return value

No return value.

Examples

#file | text:writeln:"funTEST":"system": file="c:\\tmp\\file. txt"
Write 3 lines "funTEST" and "system" to file c:\tmp\file.txt, overwriting its previous content.

#file | text:appendln:"solution":file="c:\\tmp\\file. txt"
Append 1 line "solution", to file c:\tmp\file.txt.

#file | text:insertln:"testing":file="c:\\tmp\\file. txt":offset=1
Insert 1 line "solution" after the first line to file c:\tmp\file.txt of the first example, the new content of the file
will be 3 lines "funTEST", "testing" and "system".

#file | text:remove: from=[int]{: to=[int]}{:len=[int]}: file=[string]
#file | text:removeln: from=[int]{: to=[int]}{:len=[int]}: file=[string]

Remowe a number of characters/lines from the destination file.

Parameters
from [int] Start of range of characters/lines to be removed. Zero-based.
to [int] End of range of characters/lines to be removed. Zero-based.

Default: see note below
Rev. 2022.10.10 58 FPC s.r.o. 2022

funTEST Programmer's Manual

len [int] Number of characters/lines to be removed.
Default: see note below
file [string] Path to destination text-file.

Note: if none of 'to' and 'len’ arguments are not passed, the len=1 is supplied (1 character/line to be
removed). Otherwise - pass one of the 'to' or 'len' argument to perform required action.

Return value

No return value.

Examples

#file | text:remove: file="c:\\tmp\\file. txt"
Remove first character in the file c:\tmp\file.txt

#file | text:removeln: file="c:\\tmp\\file. txt"
Remove first line in the file c:\tmp\file.txt

#file | text:remove: from=1l: to=3:file="c: \\tmp\\file. txt"
Remove characters in the range 1 to 3 (3 characters in total) in the file c:\tmp\file.txt

#file | text:removeln: from=1l:len=2:file="c:\\tmp\\file. txt"
Remove total of 2 lines, starting at index 1 (second line) in the file c:\tmp\file.txt

6.4.6.2 #export (Export to file)

Allows to export a range of specified sheet to following formats:

e CSV

e PDF

6.4.6.2.1 CSV

#export | csv{:sheet=[string]}{: from=[string]}: to=[string]: path=[string]

{:delimiter=[string]}{: rowfilter=[bool]}{: append=[bool]}

Export cell values of range of specified sheet to a CSV file (text file with separated values). Target file will be
overwritten by default. Target directory will be automatically created (including sub-folders) if does not exist.

Parameters

sheet [string] Source sheet
Default: TEST

from [string] Start of exported range. Cell name has to be used - i.e. "A1".
Default: A1

to [string] End of the exported range. Same format like "from" is used.

path [string] Path of the destination file to export.

delimiter [string] Value delimiter of CSV file.
Default: ";" (semi-colon)

rowfilter [bool] If true, the first column of the (from .. to) source cell range is
used like a row filter. If the column's value is "0", the row is not
exported. Any other value (including empty cell) will cause the
row to be exported. The value of the first column is not included
in the result.

append [bool] When true, the target file is not overwritten, but the content is

appended. When the file does not exist, it will be created.
Default: false

Rev. 2022.10.10 590 FPC s.r.o. 2022

funTEST Programmer's Manual

Return value

No return value.

Examples

#export | csv:isheet="file": to=C3: path="S$project-dir$\\examplel. csv"
Export values from sheet "file", range A1 to C3 to the file "example1.csV', located in project's directory.

#export | csv: from=B2: to=D4: path="c: \\example2. csv": delimiter=","
Export values from sheet "TEST", range B2 to D4 to the file "c:\example2.csV' (fixed path). A comma will
be used to separate values on lines in the csvfile.

6.4.6.2.2 PDF

#export | pdf:sheet=[string]: path=[string]{: from=[string]: to=[string]}
{: range=[string]}

Export cells (including formatting) of range of specified sheet to a PDF file. Target file will be overwritten by
default. Target directory will be automatically created (including sub-folders) if does not exist.

Notes: the output PDF file respects the configured page formatting (e.g. header, footer, page numbering,
margins, ..) - this must be done directly in the Calc

Parameters

sheet [string] Source sheet

path [string] Path of the destination file to export.

from [string] Start of exported range. Cell name has to be used - e.g. "A1".
Default: A1

to [string] End of the exported range. Same format like "from" is used.

range [string] Full range specification in format "<from>:<to>", e.g. "A1:D5"

Default: from and to arguments

Return value

No return value.

Examples

#export | pdf:sheet="LABEL": from=Al: to=C3: path="$project-dir$\\labell. pdf"
Export PDF from sheet "LABEL", range A1 to C3 to the file "example1.pdf', located in project's directory.

#export | pdf: sheet="LABEL": range="2Al:D4": path="c: \\example2. pdf"
Export PDF from sheet "LABEL", range A1 to D4 (range argument used) to the file "c:\example2.
pdf* (fixed path).

6.4.6.3 #stat (Statistics)
Assisted making of statistics.

6.4.6.3.1 CSV

The statistics is based on internal key-value buffer, which is filled-up by single commands and then append to
a specified file. This buffer is automatically cleared when starting the test-file.

#stat | csv:init: <nameo>=<valueo>: <nameN>=<valueN>

Init persistent values, which will not be deleted by "cIr" command. They will be listed first to the output file.

Rev. 2022.10.10 60 FPC s.r.o. 2022

funTEST Programmer's Manual

Parameters
name [string] Name of the key
value [string] Value of the key

Return value

No return value.

Examples

#stat | csv:init: Operator="Suser-name$": Station="S$teststation-names"
Set "Operator”" and "Station" persistent values. In this example, the standard variables are used. Any text
can be used here.

#stat | cswv:c
Clears all values from the buffer. The init values stay untouched.

Parameters

No parameters.

Return value
No return value.

#stat | csv:v: <name>: <value>

Add a new key or modify a value of an existing key. If the specified key does not exist, it will be inserted at
the end of the list. When key exists, its value is modified.

Parameters
name [string] Name of the key
value [string] Value of the key

Return value

No return value.

Examples

#stat | csv:v:"Resistor RI1":"965.5"
Setup new or modify "Resistor R1" key.

#stat | csv:save: <path>

Append the current record to the destination file. If the file does not exists, it will be created with header,
specified by keys.

Parameters

path [string] Path to destination file

Return value

No return value.

Rev. 2022.10.10 61 FPC s.r.o. 2022

funTEST Programmer's Manual

6.4.6.3.2 AMSTAT

Control of automated statistics.
#stat | amstat{: enabled=[bool]}
Set parameters.

Parameters

enabled [bool] Override the "Enabled" definition in the AMSTAT sheet.
Default: (current value - no change)

Return value

No return value.

Examples

#stat | amstat: enabled=no
Disable the AMSTAT by command.

6.4.6.4 #statrec (Basic statistics record)

#statrec | <stat-file-path>{;src=[int]}{;sheet=[string]}

Create a new statistic file if not exist and add a new record. The file is not saved on each added record
automatically. To sawe the file, use the #statsave command.

Parameters

stat-file-path [string] Path to the statistic-records file.
If no path is passed, default daily-statistic will be automatically
created.

src [int] The source line of statistics sheet.
Default: 1

sheet [string] The source sheet of statistics.

Default: STAT

Return value

No return value.

Examples

#statrec

Create a default (daily) statistic file in the project's "statfiles" sub-directory. The name will be "Dyyyy-MM-
dd<test-file>.csV', where "yyyy" is the year, "MM" month, "dd" day and "test-file" is the currently opened
test-file. Every day a new-one will be created.

#statrec | "c:\\temp\\stat.csv"
Create a new statistic file "c:\temp\stat.csV' if not exist and add a new record. Only this file will be used.

6.4.6.5 #statsave (Basic statistic save)

#statsave

Sawes currently used statistic file to a hard-drive.

Rev. 2022.10.10 62 FPC s.r.o. 2022

funTEST

Programmer's Manual

Parameters

No parameters.

Return value

No return value.

6.4.7 Test-file
6.4.7.1 #cellread, #cellwrite, #cellerase, #cellcopy (Cell direct-access)

#cellread/#cr
#cellwrite/#cw

#cellerase/#ce

{ sheet=[string]:} <cell>

{sheet:[string]:}<cell>{:<value1>}{:<value2>}...{:<valueN>}

| {sheet=[string]:}from=[string]: to=[string]

Provide a direct read or write access to specified cell of the test-program.

Parameters

sheet

cell, from,

[string]

to [string]

Source/target sheet name.

Default: TEST

Source/target cell specification. Cell can be typed directly or
like an expression using column names, labels and offsets.
Resulting column must be always in range "A" to "AMJ" (1 to
1024 column) and row must be in range 1 to 65536.

Possible cell formats:
¢ Direct
<column-letter(s)><row-number>
- "column-letter(s)" is from "A" (first column) to "AMJ" (last
1024th column)
- "row-number" is from 1 to 65536.
Example: B5 - second column, fifth row
¢ Direct column with offset
(S<column-letter(s) >+/-<offset>) <row-number>
- "column-letter(s)" and "row-number" are same like above
- "offset" is an integer number
The dollar-sign ("$") must be present here and together with
column letter(s) and offset must be surrounded by

parentheses.
Examples:
($A+2) 4 ="C4"
($E-1) 6 = "D6"

($B-2) 1 => error, because first column is "A" and this
expression points before the "A" column

¢ Using column names and labels
(<column-name>{ +/-<offset>}) (<label-name>
{+/-offset>})
- "column-name" is the name of column, column-names are
defined by the first row in the sheet
- "label-name" is the target label, specified by a column
named "Label" in the test-program, label-name can be also a
key-word "@this", which means the currently processed row
by the funTEST. Label names can be used only on the TEST
sheet.
- "offset" is an optional parameter with the same functionality
like above

Rev. 2022.10.10

63 FPC s.r.o. 2022

funTEST Programmer's Manual

Expression can be combined. It means, you can use column
name and direct row, or direct column and label-name like a
row, etc...
Examples:
(following examples expecting a "test" label on line 10,
"mycol" on column "H" and current line 20)
A(test+1) = direct column, using label "test" with offset +1
=> A11
(mycol-1) 2 = using column name with offset -1 and direct
row => G2
(mycol) (test) = using column name and also label, no
offsets => H10
(mycol) (@this+1) = using column name and current line
with offset +1 => H21
X(@this) = using direct column and current line, no offsets
=> X20
X(@this) on the line below => X21, etc...
(SK+1) (test) = using direct column with offset +1 and
label => L10
[string] Value which will be written into the target cell. If no value is
passed, the target cell is cleared. If more than one value is
passed, values are first merged together and the result will be
written into the target cell.

ValueL.N

Return value

#cellread - returns a value in the source cell
#cellwrite, #cellerase - no return value

Examples

fcellread | X1
Simple read a value from the cell "X1".

#cellread | sheet=example; A2
Read a value from the cell "A2" on the sheet "example".

#cellread | (mycol+2)(@this)
Read a value from the cell, specified by column-name "mycol" with offset +2 and currently processed row.

#cellwrite | X1
Clear the cell "X1".

#cellwrite | X1;"myvalue"
Direct write a value "myvalue" to the cell "X1".

#cellwrite | sheet=example; (mycol)2;"ab";"cd";"ef"; "gh"
First, the parameters after cell specification are merged => "abcdefgh". This value will be written into the
column named "mycol", second row.

#cellerase | sheet=example; from=Al; to=B5
Clears the cell-range from A1 to B5 on sheet "example".

#cellcopy/#cc | {srcsheet=[string]}{:dstsheet=[string]}:srcfrom=[string]
:srcto=[string]:dst=[string]{: convert=[enum] }

Copy the area of cells from source to destination, optionally with automatic value conversion.

Rev. 2022.10.10 64 FPC s.r.o. 2022

funTEST Programmer's Manual

Parameters

srcsheet, dstsheet [string] Source/target sheet name.
Default: TEST

srcfrom, srcto, dst][string] Source area and destination starting-cell specification.
The format is the same like the #cellread/write/erase
commands.

convert [enum] Automatic cell conversion while copying. If the source

value cannot be converted, the empty string is passed.
® int - convert to integet
e double - convert to floating point
Default: (no conversion)
Return value

No return value

Examples
#cellread | dstsheet=VALUES: srcfrom=W2: srcto=X10: dst=Al: convert=double
Copy the range from W2:X10 from the TEST sheet (no srcsheet argument) to VALUES destination sheet
starting the cell A1. Automatic conversion to double will be performed.
6.4.7.2 #retclear (Clear return values)
#retclear | {from=[string]}{; to=[string]}

Clear a specified range of Return Value and Return Status column in the test-program spreadsheet. This
should be usually done at the start of the test-program.

Parameters
from [string] An expression to specify starting line of range to be cleared. If

omitted, the first row of test-program is used.

Possible options:
¢ line number greater than 1
e expression using variable @this or label name and offset
using + or - sign
to [string] An expression to specify ending line of range to be cleared. If
omitted, the last row of test-program is used.

Return value

No return value.

Examples

#retclear
Clear all return values in the whole test-program.

#retclear | from=@this
Clear return values in the current line (means line with #retclear command) to the end of the test-program.

#retclear | from=10
Clear return values in the fixed line number 10 to the end of the test-program.

#retclear | from=@this+l; to=@this+10
Clear return values in the next 10 lines of current row.

Rev. 2022.10.10 65 FPC s.r.o. 2022

funTEST Programmer's Manual

#retclear | from=labelA+5
Clear return values in 5 lines from line labeled "labelA" to the end of the test-program.

#fretclear | from=labelA; to=labelB
Clear return values in line labeled "labelA" to the line labeled "labelB".

6.4.7.3 #testfile (Testfile control)

#testfile | close

Closes the currently running test-program. At this point the execution of test-file is breaked and no
following instruction is executed.

Parameters

No parameters.

Return value

No return value.

#testfile | selectnew
Shows up the test-file dialog to select a new test-file. The previous project is used. If no new test-file is

selected, the "Return Status" = 1 is set and following instructions are executed normally. If a new test-file is
properly selected, the execution of current test-file is breaked.

Parameters

No parameters.

Return value

No return value.
#testfile | save
Immediately saves the currently running test-file to a hard-drive.

Parameters

No parameters.

Return value

No return value.

#testfile | reload

Close and re-open the project, using current test-file. At this point the execution of test-file is breaked and
no following instruction is executed.

Parameters

No parameters.

Return value

Rev. 2022.10.10 66 FPC s.r.o. 2022

funTEST Programmer's Manual

No return value.
#testfile | load{:<project>}:<test-file>{: force=[bool]}

Close current, load and start new test-file by specified name of test-file and optionally project. At this point
the execution of test-file is breaked and no following instruction is executed.

Parameters

project [string] Project name or full path to .ftproject.xml project's file. If no
project is specified, the test-file is about to search in all
projects.

Default: none

test-file [string] Test-file name or full path to test-file (.ods). If no project is
specified and there is more than one test-file with the same
name, and error is thrown. By default, if project to be loaded is
already loaded, the command will abort.

force [bool] Force project to be reloaded, even if it is the same like currently
loaded.

Default: no
Note: path or name of project and test-file is case non-sensitive

Return value

"LD" if the project is already loaded, otherwise No return value

Examples

#testfile | load: tfOl
Load program with "tf01" name in all projects.

#testfile | load: prj0l: tf0l
Load program with "tf01" name in "prj01" project.

#testfile | load:"c:\projects\prjO0l\tf0l. ods"
Load program by full-path of test-file. The test-file must be assigned in any existing projects.

#testfile | load:"c:\projects\prjOl\prjO0l. ftproject. xml":"c: \projects\prjol
\tf01l. ods"
Load program by full-path of project and test-file.

6.4.7.4 #str (String operations)
Request funTEST version: 1.0.1906.311

6.4.7.4.1 Split
#str | split{: <src>}{:dev=[string]: <cmd>}{: var=[string]}{:sheet=[string]}:cell=[string]
{:sep0=[string]:..:sepN=[string]}{:rsep0=[string]:..:rsepm=[string]}

{: convert=[enum] }
Split string by seperator(s) to spreadsheet columns/rows. Destination cells are always overwritten.

Parameters

src [string] Source string to split. If no string is passed, the function
Rev. 2022.10.10 67 FPC s.r.0. 2022

funTEST Programmer's Manual

automatically take the ReturnVValue from previous valid step.
Default: ReturnValue from previous step

dev, cmd [string] Get source string directly from any device using a command. If
this argument is not passed, the function try take the value
directly from src argument.
® dev - alias of device (must be defined in active teststation)
* cmd - command to send to a device
Default: src argument

var [string] Get source string directly from any testfile variable. The source
variable can also be an element of an array, use the[1] index
suffix to specify. If this argument is not passed, the function try
to take the value directly from src argument.
Default: src argument

sheet [string] Target sheet to store splitted values.
Default: TEST

cell [string] Target top-left cell to store values. Absolute or relative format
possible, same format like #cellread/#cellwrite/#cellerase
functions.

sep, rsep [string] Column (sep) and row (rsep) seperator. One of them or both

arguments can be used at the same time to split source string
to columns or rows or both. There can be multiple (alternative)
column or row separators.

limit, rlimit [int] Column and row limits. These arguments will limit a max
number of columns and/or rows.
Default: no limit

convert [enum] Automatic conwersion of all values. If the conversion is not
possible, the source value is passed to the cell.
e int - convert to integer numbers
® double - convert to double numbers
Default: (no conversion)

Return value

No return value. Results are directly written to another cells.

Examples
#str | split:src="text; to; parse\nnew; row": cell="W(Q@this)":sep=";": rsep="\n"
Split directly passed source string to "W"-column at processed row using ";" column separator and "/" row
separator.
Result:

w X Y

100 Jtext |to parse
101 [new Jrow
(row numbers are for example, depends on current processing step)

#str | split:sheet=VALUES: cell=Al:sep=";":sep=":":rsep="\n": rsep="\r"
Split ReturnValue of previous valid step to "VALUES" sheet, starting by A1 cell. Multiple column/row
seperators are used.

#str | split: sheet=VALUES: cell=Al:sep=";": convert=int
Split ReturnValue of previous valid step to "VALUES" sheet, starting by A1 cell. Automatic conversion of
values to integer will be done.

Rev. 2022.10.10 68 FPC s.r.o. 2022

funTEST Programmer's Manual

6.4.7.4.2 At

#str | at{:<src>}{:var=[string]}:sep=[string]
{:rsep=[stringl]}{:cell=[int]}{: row=[int]}

Internally splits the string into the virtual table and returns a value by row and column index.

Parameters

src [string] Source string to split. If no string is passed, the function
automatically take the ReturnValue from previous valid step.
Default: ReturnValue from previous step

var [string] Get source string directly from any testfile variable. The source
variable can also be an element of an array, use the [i] index
suffix to specify. If this argument is not passed, the function try
to take the value directly from src argument.
Default: src argument

sep, rsep [string] Column (sep) and row (rsep) seperator. Column separator is
needed, but row separator is optional.
One of them or both arguments can be used at the same time
to split source string to columns or rows or both. There can be
multiple (alternative) column or row separators.
Default: rsep ignored

cell, row [int] Cell/Row absolute index from 0 to return.
Default: 0

Return value

String value indexed by arguments row and cell.
Error is returned, when the row or cell index is out of range.

Examples

#str | at:src="text; to; parse\nnew; row": sep=";": rsep="\n": row=0: cell=0
Returns the value "text".

#str | at:src="text; to; parse\nnew; row": sep=";": rsep="\n": row=0: cell=2
Returns the value "parse".

#str | at:src="text; to; parse\nnew; row": sep=";": rsep="\n": row=1l: cell=0
Returns the value "new".

6.4.7.5 Localization

Since version 1.0.1912.1913 the funTEST supports test-file localization. The localization is stored in external .
local.xml file, which can be loaded using dedicated command.

The localization file is a standard FPC XML localization format (v2.0). There is a dedicated software to create
and edit localization files: FPC Localization Editor

Following is supported:

Step Name automatic translation

Text of #dlg and #msg automatic translation
Variable caption automatic translation
Manual translation using #local command

Be careful while choosing the localization key prefix and suffix in the Localization Editor. It's recommended to
use "#" both for prefix and suffix. For example it's not recommended to use "$", because this letter is used for

Rev. 2022.10.10 69 FPC s.r.o. 2022

funTEST Programmer's Manual

inline variables names and also "@", because it's used for some keywords. Of course if you use it even this
recommendation, it will work, but you have to double the localization prefix or suffix character to type it (e.g.
@@ will be translated to a single @ after translation and so on).

6.4.7.5.1 #local (Localization)

#local | load: <path>

Loads the xml localization file and selected the default localization according the funTEST's language.
Variables are also reloaded to refresh their captions in the operator's interface.

Parameters

path [string] Path to .local.xml localization file.
It's possible to use def keyword to load default file - the same
name test-file, but with .local.xml file extension.

Return value

No return value.

Examples

#local | load:"c:\\files\Test.local. xml"
Load "Test.local.xml" file from "c:\files" directory.

#local | load: def

Let's have a test-file name "Board1.ods" and project "Boards".

This command will load the "c:\Users\Public\FPC\funTEST\projects\Boards\testfiles\Board1.local.xml".
#local | lang: <name>

Select another language like default.

Parameters

name [string] The short 3-letter name of language, e.g. "cze", "eng", ...
Return value
No return value.

#local | {<lang>:}<text>

Localize the text using default or explicitly selected language. If no localization file is loaded, the funTEST will
automatically try to load the default localization file (test-file name with .local.xml extension).

Parameters

lang [string] Use defined language to translate.
Default: funTEST's language

text [string] Any text to translate.

Return value

Translated text

Examples

Rev. 2022.10.10 70 FPC s.r.o. 2022

funTEST Programmer's Manual

Translation expect the file to be defined. Translated text in following examples are for illustration only.

#local | "@CompanyName@: FPC s.r.o."
Translate text using default language (english in this case) to "Company name: FPC s. r. o.

#local | cze:"@CompanyName@: FPC s.r.o."
Translate text to czech: "Jméno spoletnost: FPC s.r.o."

6.4.8 Printing

#print | *def{:printer=[string]}{: ?<var >=[string]: ... ?<var >=[string]}

Set printing defaults:

e default printer name
e create/overwrite variables

Variable(s) are replaced in the final printer's data. To define variable in the source data, use a variable name
between dollar-signs: Svariable$

Parameters

printer [string] Printer name to be used as default (e.g. "ZDesigner GX430t",
the name in the Windows Printers control panel).

var, [string] Variable(s) to be created/changed. Each variable name must

start by '?', otherwise it is not recognized as variable.
If variable does not exist, its created, otherwise the value of
existing one is changed.

Return value

No return value.

Examples
#print | *def: printer="ZDesigner GX430t":?header="Hello!":?footer="Good bye.."
Set default printer and create/change two variables "header" and "footer".

6.4.8.1 Labels

Send an unformatted data to the specified printer (RAW printing). This allows typically to control label-printers
by sending printer's command directly.

Source data can be directly in test-file or in an external text-file. This depends on which of "sheet" or "file
argument of "label" command is used:

® sheet used: range argument is required, data are in the specified sheet and range

e file used: data are in specified external text-file

Variables (standard and test-file) are applied to final data before sending to the printer.

#print | label: sheet=[string]: range=[string]{: printer=[string]}

Print using data defined directly in the test-file's sheet.

Parameters
sheet [string] Sheet name with print data.
range [string] Range of specified sheet to obtain source data.

Format: "<cell-from>: <cell-to>" (i.e. "Al: B10")

Rev. 2022.10.10 71 FPC s.r.o. 2022

funTEST Programmer's Manual

¢ one column only: all rows are merged to final printer's data
(using "\n" separator, skipping empty rows)

* more than one colum:
- first column is used like a row-filter:
"1" menas data-row is always taken, empty means data-row
is taken if non-empty, otherwise ignored
- following columns are data: merged without any
separator from all cells of the row

printer [string] Optionally set a printer name. Required if no default printer set.

Default: printer set by *def

Return value

No return value.

Examples

Following examples uses print commands of Zebra label printers.
Sheet: "PRINT" for example

A
XA
PW1020
*ADN, 80,40
AF0O10,30
AFDFunTESTAFS
D4

O©COoO~NOOARWN-

10
#print | label: sheet="PRINT": range="Al: A10"
Print a simple one-text only label using printer's data from sheet "PRINT", range A1 to A10 (one column,
10 cells in total) to the printer. Rows 7 to 10 are ignored, because they are empty. Rows 1 to 6 are
merged to one string using LF ("\n") separator.

A B

XA

APW1020

"ADN, 80,40

AFO10,30
AFDFUNTESTAFS

~ADN, 50,30
AFO10,140

AFDTesting system”FS
»z

©COoO~NOOADWN-=-

10
#print | label: sheet="PRINT": range="Al: B10"
Print a simple label with a header and optionally one text below, using printer's data from sheet "PRINT",
range A1 to B10 (column A is used like a row-filter, column B like data) to the printer. Rows 1, 2 and 9 are
always taken (because they are not empty and there is no filtering specified), rows 3 to 8 are optionally
taken/ignored, depending on column "A" of corresponding row. Row 10 is always ignored, because there
is no filtering specified and data are empty.

#print | label: file=[string]{: printer=[string]}

{3 ?<var0>:[string]:?...: ?<varN>:[string]}

Rev. 2022.10.10 72 FPC s.r.o. 2022

funTEST Programmer's Manual

Print using external text file with variable replacement.

Parameters

file [string] Path to text-file with print data.

printer [string] Optionally set a printer name. Required if no default printer set.
Default: printer set by *def

var, [string] Optional additional variables to be replaced in the loaded data

from the file.

Variable names must start by "?" to recognize argument(s) as

variables.

Return value

No return value.

Examples

Expected example file content:
A XA

~"PW1020

~ADN, 80, 40

~FO010, 30

AFDfunTEST"FS
~ADN, 50, 30

~“F010, 140

~"FDCode: $codeS$"FS
~ADN, 50, 30

~“FO010, 230

~"FDOperator: $user-1ogin$"FS
X7

#print | label: file="$project-dir$\\labels\\S$testfile-name$. txt": ?code=123456789
Print label, defined in the .txt file with same name like current test-file in the "\labels" sub-directory of
currently loaded project. Additional variable $code$ is replaced and $user-login$ is replaced from standard

variables.

6.4.8.2 Text

Send a plain text to the specified printer to print.
Usage is the same like Label printing, see for additional arguments only.

#print | text:sheet=[string]: range=[string]{: printer=[string]}
{: page-margin=[int]}

Print using data defined directly in the test-file's sheet.

Additional parameters
page-margin [int] Page margins in [mm].
Default: 10 [mm]

#print | text: file=[string]{: printer=[string]}{: page-margin=[int]}
{:?<var0>=[string]:.”:?<varN>=[strinq]}

Rev. 2022.10.10 73

FPC s.r.o. 2022

funTEST Programmer's Manual

Print using external text file with variable replacement.

Additional parameters

The same like above.

6.4.8.3 Spreadsheet

#print | sheet: <sheet>{: printer=[string]}{: format=[enum]}{: orientation=[enum]}

Directly print the selected OpenOffice Calc's sheet. This is the same like "Print" functionality in the
OpenOffice Calc.

Requirements:

e |t is necessary to define "Print sections" (the Format menu) in the test-file (.ods) - you have to remove them
all on all sheets, or define a new on specified sheet to be printed otherwise nothing will happen after printing
(no pages will be send to the printer)

Parameters

sheet [string] Spreadsheet name to print.

printer [string] Optionally set a printer name. Required if no default printer set.
When a network printer is used - the name must be an UNC
path, e.g. "\printsernver\HP LaserJet 1000" (backslashes must
be escaped).
Take care: if specified printer does not exists or the name is
wrong, the OpenOffice will print the document on the default
printer.

Default: printer set by *def”
format [enum] Paper format:

® A3

® A4

® A5

® B4

® BS

Default: 24
orientation [enum] Paper orientation:

® portrait

® landscape

Default: portrait

Return value

No return value.

Examples

#print | sheet:"PRINT": printer="PDFCreator"
Print the sheet "PRINT" on "PDFCreator" printer using standard A4 format - portrait.

#print | sheet:"PRINT": printer="\\\\printserver\\HP LaserJet 1000":
format=A5: orientation=landscape
Print the sheet "PRINT" on a network printer using A5 paper format - landscape.

Rev. 2022.10.10 74 FPC s.r.o. 2022

funTEST Programmer's Manual

6.4.9 Special
6.4.9.1 #catch (Wait for a specified response of device)

#catch | dev=[string]:cmd=[string]: accept=[string]{: accept =[string]: ... accept =[string]}

{; timeout=[number] }{; interval=[number]}{; inv=[bool]}

Repetitively send the command to specified device and block executing the program until return value match
to expected value.

When #oninput event occurs, the #catch will break.

If any command execution to the device fails, the #catch loop breaks and error message of failed command is
passed to Return Value and Return Status set to 1.

Parameters

dev [string] Target device alias.

cmd [string] Command to send to target device.

accept [string] Return value(s) of command to be accepted. The #catch

command blocks executing the program until any of these
strings match the return value.
The accept argument support wild-cards (? for any one charater
and * for any number of charaters).

timeout [number] Time limit in [ms] to wait to pass all accept strings. If the
timeout is reached, the #catch command return status will be
one and current state of inputs will be returned.
Default: (no timeout)

interval [number] Interval in [ms] between executing of IO commands.
Default: 100 [ms]
inv [bool] Inverts condition defined by parameter accept.

Return value

The matching return value of device.
Returns BREAK when paused while debugging or #oninput event.

Examples

#catch | dev="tester":cmd="finish?";accept="1"

Send the "finish?" command to the device with alias "tester" until the command returns "1". There is no
timeout.

#catch | dev="tester":cmd="finish?";accept="1": timeout=5000

Almost the same like previous, but with defined timeout of 5 seconds. If the command will not return "1"
within 5 seconds the #catch command is terminated with error - Return Status will be set to 1.

#catch | dev="com": cmd="read?"; accept="*PASS*"
Wild-card example, the "read?" command is send to "com" device as long until the return value will
contain "PASS" sub-string.

6.4.9.2 #login (Login operations)

#login | login{:user=[string]}{: pwd=[string]}{: title=[string]}
Perform the login or raise the login dialog. This will affect the global logged user in funTEST.

Parameters

user [string] Username to login. Can be omitted if specified plugin is
configured to login via password only.

Rev. 2022.10.10 75 FPC s.r.o. 2022

funTEST Programmer's Manual

Default: empty

pwd [string] Password of user to login.
Default: empty
title [string] Custom title of login dialog

Default: "Login" (translated according localization)

Return value

1 or0 -userlogged in successfully or not (dialog canceled)

Examples

#login | login
Just raise the login dialog.

#login | login: user="admin": pwd="adm"
Direct user login via username and password. No dialog is raised.

#login | try{:title=[string]}{:checkright=[string]}

Raise the login dialog and returns the logged-in user. This will NOT affect the global logged user.

Parameters
title [string] Custom title of login dialog
Default: "Login" (translated according localization)
checkright [string] Check for specified right of logged-in user.
Default: -

Return value

If the login dialog is cancelled:
® CANCEL

If there is "checkright" argument:
e 1 or0 (logged operator has the required right or not)

Otherwise:
® <login-name>: <username>: <rights>

"rights" are passed separated by a comma, keywords are oper, prg and adm

Examples

#login | try
Raise the login dialog with default title and return logged-in login-name, username and rights.

#login | try:title="NG box confirmation": checkright="adm"
Raise the login dialog with custom title and check if logged user has the right "adm". Returns 0/1.

#login | plugin:[<subarguments>]
Call a user-command in login plugin. The functionaly and arguments depends on specified plugin features.

Parameters

subarguments [string] Arguments to pass \ia the user-command.

Rev. 2022.10.10 76 FPC s.r.o. 2022

funTEST

Programmer's Manual

Return value

Depends on specified plugin.

Examples

#login | plugin:[num=l: str="abc"]
Call the plugin's user command - pass for example arguments num and str.

6.4.9.3 #bct (Batch-test)

#bct | run: <name>{: panel=[list]}{: type=[string]l}{: range=[string]}{: segment=

[string]l}

Run specified batch-test. The batch-test must be defined in the project. Command blocks the execution until

batch-test finishes.

Parameters

name [string]
panel [list]
type [string]
range [string]
segment [string]

Return value

Number of measurements.

Examples

#bct | run: resistors

Simple run batch-test "resistors".

Batch-test name to run.

Filter batch-test definition to only selected panel(s). Enter
numbers, comma separated.

Default: (all panels)

Perform measurements of specified types only. The type equals
to "Type" selection in the batch-test definition". Case-
insensitive.

Default: (all types)

Perform measurements of specified range only.

Default: (all ranges)

Set TP (MX mapping) segment(s) before running the batch-test.
Default: (all segments)

#bct | run:resistors: panel="1,3"
Run batch-test "resistors" with panels 1 and 3 only.

#bct | run: resistors: range="100k"
Run batch-test "resistor" with range "100k" only.

#bct | prepare: <name>

Prepare-only specified batch-test. ltems of specified batch-test will be copied to last-result(s) without
performing any measurement. This allows to read-out parameters via result command before run the

measurement.

Parameters

name [string]

Batch-test name to prepare.

Rev. 2022.10.10

77 FPC s.ro. 2022

funTEST Programmer's Manual

Return value

Number of items.

Examples

#bct | prepare: resistors
Prepare batch-test "resistors".

#bct | read?: <name>
Read single result value of specified measurement of last batch-test run.

Parameters

name [string] Measurement name to read.

Return value

Value of measurement.

Examples

#bct | read?:R1
Read result value of "R1" measurement.

#bct | result:cell=[string]{: panel=[1list]}{:sheet=[string]:}{: format=[string]}
{:offset=[number]}{: max=[number] }

Store the whole result of last batch-test run at specified coordinates of specified sheet. Result is stored by
lines.

Parameters

cell [string] Starting top-left cell. Take

panel [list] Filter results to only selected panel(s). Enter numbers, comma
separated.
Default: (all panels)

sheet [string] Optional sheet specification. The sheet must exists. Take care
when the "TEST" sheet is used, the command can overwrite
your program!
Default: BCT

format [string] Possibility to define columns to be stored to target cell/sheet.

Available columns:

® cnabled

® name

® type

® range

® panel

® caption

® Jlolimit

® lolimit-base (low-limit in base units)
® hilimit

® hilimit-base (low-limit in base units)
® tplow

® tphigh

® value

® value-base (measured value in base units)

Rev. 2022.10.10 78 FPC s.r.o. 2022

funTEST Programmer's Manual

The lolimit, hilimit and value are re-calculated to units, used in
the definition. If low-limit is defined, hi-limit and value is
recalculated according to lo-limit units. If no low-limit is defined,
but hi-limit is, the value is recalculated according to hi-limit
units. If both lo-limit and hi-limit are not defined, the value is
returned in base units.

Enter like a string using column names above, separated by a
comma. The order of columns is preserved when storing.
Default: "name, value"

offset [number] Skip number of results to store.
Default: 0
max [number] Limit number of results to store.

Default: 0 (no limit)

Return value

No return value. The result is directly stored to the specified sheet/cell.

Examples

#bct | result:cell="Al1"
Store name and value results to sheet "BCT", starting by cell "A1".

#bct | result:cell="Al":sheet="BCTresult": format="name, lolimit, hilimit,
value", max=15

Store name, low-limit, hi-limit and value results to sheet "BCTresult", starting by cell "A1". Number of
results to store will be limited to 15.

6.4.9.4 #extprocess (Run an external process)

fextprocess | start: <filename>{;args=[string]}{;waitforexit=[bool]}
{; timeout=[number] }{; nowindow=[bool] }
{; redirstdout=[bool] }{; redirstderr=[bool]}

Start a new external process.

Parameters

filename [string] Path to an executable file to execute.

args [string] Optional command-line arguments.

waitforexit [bool] If true, block executing the program until process exit.
Default: false

timeout [number] Time limit in [ms] to wait for process exit. If the process will not
exit in this time limit, the return status becomes 1 (error).
Default: (no timeout)

nowindow [bool] Hide the window of executing application.
Default: true

redirstdout [bool] Redirect process standard output ("stdout") stream. If true, the

output is received to internal string buffer. This buffer can be
accessed by "stdout" command.
Default: false

redirstderr [bool] Redirect process stadard error ("stderr") stream. If true, the
error output is received to internal string buffer (use the
command "stderr" to access).
Default: false

Return value

Rev. 2022.10.10 79 FPC s.r.o. 2022

funTEST Programmer's Manual

No return value.

Examples

fextprocess | start:"c:\\test. bat"
The most simple use, just start the "test.bat" batch file. No arguments. No output(s) redirecting. No
waiting for process exit.
fextprocess | start:"c:\\test.exe";args="-file abc. txt";
waitforexit=true; timeout=3000
Start the "test.exe" process and pass "-file abc.txt" command-line arguments. Command will block the
program execution for a maximum of 3 seconds. If the started process will not finish its work in 3
seconds, the Return Status becomes log.1 (error).
#extprocess | quit

Quit the running process immediately.

Parameters

No parameters.

Return value

No return value.

#extprocess | running?
Check if the started process is running.

Parameters

No parameters.

Return value

Returns "1" if the process is running, otherwise "0".

#extprocess | retcode
Get return code of last exited process.

Parameters

No parameters.

Return value

Typical returns "0" if ok, anything else is an error.

#extprocess | stdout: read=[number]
#extprocess | stdout: count?
#extprocess | stdout:clr
#fextprocess | stderr: read=[number]
#extprocess | stderr: count?

Rev. 2022.10.10 80 FPC s.r.o. 2022

funTEST Programmer's Manual

#extprocess | stderr:clr

Access the internal standard output (stdout) or error output (stderr) buffer. To use "stdout" command, the
"redirstdout" parameter of start command must be set to true. To use "stderr" command, the "redirstderr"
must be set to true.

Parameters

read [number] Line number of internal buffer to read.
e [f positive or equals to a zero (>= 0), the index points to the
start of the buffer.
¢ If negative (< 0), the index points to the end of the buffer.

If asterisk (*) is passed, all lines from the buffer, separated by
new-line (LF) character is returned.

Return value

Return value depends on passed command:

e read=In/-In/* - return value is the line from the stdout/stderr buffer (or all lines)
e count? - return value is line count of the buffer

e clr - no return value, clear the buffer

Examples

Following examples expecting filled out the stdout or stderr buffer with for example following lines:
e (0) abc

(1) def
(2) ghi
(3) jkl
(

4) mno

#extprocess | stdout: count
Returns 5.

#extprocess | stdout: read=0
Returns "abc".

#extprocess | stdout: read=1
Returns "def".

#extprocess | stdout: read=-1
Returns "mno".

#extprocess | stdout: read=-2
Returns "jkI".
#extprocess | stdout: read=*

Returns "abc\ndefinghi\njk\nmno".

6.4.9.5 #dummy (Dummy-test control)

This command enables to control a dummy-test sequence. Dummy-test is in short the test of the testing
fixture. It is based to test and find known errors (dummy components) on FAIL DUTs, which always must be
identified correctly. Typical is to perform a dummy-test before the main testing. In fact, the dummy-test is a
classic test sequence, but the programmer must take care about notifying dummy component parts during the
test.

The dummy-test must be enabled and dummy-test component(s) must be defined in the HEAD sheet of the
Rev. 2022.10.10 81 FPC s.r.0. 2022

funTEST Programmer's Manual

test-file.

Dummy-test has its own graphics representation on the operator screen. During dummy-test procedure, the
counter section is hidden. Instead of counter section the dummy section is shown, to the bottom corner of the
operator screen.

#dummy | start{: <dummy-test-name>}{: enabled=[bool]}{: passbefore=[bool]}{:
passafter=[bool]}
#dummy | reset

® Start command (re-)loads the dummy-test components and shows the graphics interface on the operator
screen.
¢ Reset command hides the dummy-test interface and resets the dummy-test.

Parameters

dummy-test-name [string] In the HEAD sheet, the DUMMY LIST section can be defined
more types of dummy tests. Each of them can contain only
selected components and specified logic to pass the
component test.

If no different dummy tests are specified or this argument is
omitted, all enabled dummy components are used with 'any’
logic (pass or set is used to mark the component as done).

enabled [bool] Override the "Enabled" value, written in the HEAD.
Default: "Enabled" value in the HEAD

passbefore [bool] Override the "PASS before" value, written in the HEAD.
Default: "PASS before" value in the HEAD

passafter [bool] Override the "PASS after" value, written in the HEAD.
Default: "PASS after" value in the HEAD

Return value

No return value.

#dummy | enabled?
#dummy | onbegin?
#dummy | onend?
#dummy | done?
#dummy | started?

Get the dummy-test settings (allows to define dummy-test parameters in the HEAD sheet) and the status:

® cnabled? -reads the enabled flag in the HEAD definition

® onbegin?, onend? -reads the values from dummy-test definition in the HEAD sheet of the test-file

e done? -reads the status of dummy-test, the dummy-test is done if all defined components already passed
e started? - if dummy-test is started (by a "start" command)

Parameters

No parameters.

Return value

When true, return value is "1".
When false, return value is "0".

#dummy | set: <dummy-component>
#dummy | pass: <dummy-component>

Rev. 2022.10.10 82 FPC s.r.o. 2022

funTEST Programmer's Manual

#dummy | fail: <dummy-component>

Mark the dummy-test component as done. According declaration in the HEAD sheet, the specified component
is marked as done by 'fail' or 'pass' result of specified component on the dummy-sample testing board.

Parameters

dummy-component [string] Dummy-test component name to be marked as passed. The
component must be defined in the "Dummy list" in the HEAD
sheet.

There are two reserved dummy components (internal, not

defined in the test-file HEAD sheet):

® @before - ifthe "PASS before" option is enabled (HEAD
sheet), it is required to successfully test the PASS DUT.
Until this DUT is placed and tested, it is not possible to mark
any other component as passed. The 'pass' command must
be used to mark this component.

e Qafter -if the "PASS after" option is enabled (also HEAD
sheet), it is required to successfully test the PASS DUT after
all previous dummy components are passed. The 'pass'
command must be used to mark this component.

Return value

No return value.

Examples

#dummy | pass: @before
Mark the PASS before test done.

#dummy | set: Rl
Mark the defined component - "R1" done.

#dummy | set: C3
Mark another defined component - "C3" done.

#dummy | fail: L1
Mark another defined component - "L1" done. The meaning is the component L1 must fail to pass the
test.

#dummy | pass:@Qafter
Mark the PASS after test done.

#dummy | done?
If this commands returns "1", the dummy-test is finished (all components are passed), otherwise not

(some of the component is not marked passed).

6.4.9.6 #get (Get a value)

#get | <source>: <property>{;argl=[?]}{;arg2=[?]}...{;argN=[?]}

Using this function, it is possible to access system properties.

Parameters

source [enum] Specify property source.
Valid values:
* system

Rev. 2022.10.10 83 FPC s.r.o. 2022

funTEST

Programmer's Manual

property [enum]
arg,...arg, [?]

Return value

* project

e teststation

Name of the property. It depends on property source.
Optional arguments

Return value depends on specific source and property. Below you can find all possible source, their

properties and return values.

Source Property

system tickcount

Value type

[int]

loggeduser [string]
machinename [string]

winverfull
winver

funtest netver

ver
exepath

project name
dir
path

teststation name
dir
path

testfile name
path

Examples

#get | system: tickcount

[string]
[string]

[string]

[string]
[string]

[string]
[string]
[string]

[string]
[string]
[string]

[string]
[string]

[string]

Description

Get a number of milliseconds since operating system
start.

Note: "tickcount" is stored as a 32-bit signed integer. It
will increment to a maximum positive integer value for
approximately 24,9 days, then jump to to a minimum
negative number and increment back to zero during next
24,9 days.

Login of currently logged user in the OS.

Name of the computer.

Full version of the OS, including name, senice pack, etc.
Short version of the OS, format a.b.c.d

Full name of .NET framework version, used at the compile
time.

Version of funTEST executable.

Full path to the funTESTs executable.

Name of currently loaded project
Directory of currently loaded project file
Full path to currently loaded project file

Name of currently used teststation
Directory of currently used teststation file
Full path of currently used teststation file

Name of currently loaded test-file

Full path of currently loaded test-file

Note: when read-only test-files are used, the funTEST
returns source path and directory of loaded test-file, not
the local working copy

Directory of currently loaded test-file

Get a number of milliseconds since OS start, returns for example 45674961, which means the OS is
running for about 12 hours, 41 minutes and 15 seconds.

6.5 Statistics

6.5.1 Automated statistics

Automated statistics is represented by "AMSTAT" sheet and dedicated "Automated statistics" column in
TEST sheet in the test-file. This module makes statistics much more easier to use comparing to #stat

command.

Rev. 2022.10.10

84 FPC s.r.o. 2022

funTEST Programmer's Manual

Principle

On the AMSTAT sheet are defined targets with specified names, which are called by AMSTAT column in the
test-file. Each target is defined by target device and command. The target is executed on every line of test-file,
where the specified name is used in AMSTAT column.

6.5.1.1 AMSTAT sheet
AUTO STAT section

Enabled - yes or no, global enables or disables the auto stat functionality
Device - the default device to be used, when no device is specified in target defintion

Target definitions

Name definition - name, used in AMSTAT column
Source column - name of source column to read the value of current row before execute the command
Value - read value of source column

Device - target device or internal command to use, if empty - the default device is used
Command - command and parameters to be executed

The combination Source column and Value can be used, when reformat of read value from source column to
pass to the command is needed. Notice, that this will slow-down the statistics system.
They can be left empty if there is no need to reformat the value.

Command column support variables to pass values from test-file row where the define is called:

Svalue$
$step-name$
Scomment$
$judges$

$! judge$
Starget-value$
Sunit$
$lo-limits$
Shi-limit$
Sresult$
Sreturn-value$
Sstep-nr$

Pass value, read by Source column

Step-name column (test-file)

Comment column (test-file)

Judge column (test-file), formatted like "0" (OK) or "1" (NG)
Inverted judge column (test-file), "1" if OK, otherwise "0"
Target value column (test-file)

Unit column (test-file)

Lo limit column (test-file)

Hi limit column (test-file)

Result column (test-file)

Return value column (test-file)

Row number of caller step (equals to spreadsheet row number)

Rev. 2022.10.10

85 FPC s.r.o. 2022

	Introduction
	Application configuration
	Basics
	General

	Login system
	Permission levels
	Standard login
	User account list
	Custom rights
	Definition
	Usage

	Command-line arguments
	Install
	Login at startup
	Startup project
	Startup test-file

	Teststation
	IO and MX mapping
	Supported devices
	Aliases and segments
	IO commands
	*rst (Reset)
	seg (Set segment)
	s (Set output)
	c (Clear output)
	ca (Clear all non-segmented)
	r (Read input)
	ra (Read all non-segmented)
	d (Delay)

	MX commands
	*rst (Reset)
	route/croute (Set routing)
	seg (Set segment)
	set/cset (Set TP)
	clr (Clear TP)
	d (Delay)

	Testprogram
	Asynchronous program flow
	Commands
	#callasync (Call a function asynchronously)
	#sync (Async function synchronization)
	#async (Async functions control)
	#asyncflag (Async notification system)

	Variables
	Standard variables
	Test-file variables
	Arrays
	Definition
	Length
	Usage

	Commands
	#cnt (Counter operations)
	#var (Variable operations)

	Interrupt events
	Event types
	prj-closing (Project closing)
	prj-closed (Project closed)
	oper-changed (Operator changed)
	run-at (Run at specified time)
	run-every (Run every interval)

	Commands
	Syntax
	Summary
	Flow control
	#goto (Jump to label)
	#call (Call a function)
	#return (Return from function)
	#throw (Exit function with error)
	#onerror, #onfail (Check for error or fail)

	Operator interface
	#msg (Show a message)
	#dlg (Show a dialog)
	#status (Set test status of current panel)
	#resultlist (Result list operations)
	#panel (Panels control)
	#stopwatch (Integrated stopwatch control)
	#userbtn (User-button control)
	#adjust (Value adjust dialog)

	IO
	#catchio (Wait for a specified IO device input)
	#oninput (External input interrupt)

	Files
	#file (File operations)
	INI files
	Text files

	#export (Export to file)
	CSV
	PDF

	#stat (Statistics)
	CSV
	AMSTAT

	#statrec (Basic statistics record)
	#statsave (Basic statistic save)

	Test-file
	#cellread, #cellwrite, #cellerase, #cellcopy (Cell direct-access)
	#retclear (Clear return values)
	#testfile (Testfile control)
	#str (String operations)
	Split
	At

	Localization
	#local (Localization)

	Printing
	Labels
	Text
	Spreadsheet

	Special
	#catch (Wait for a specified response of device)
	#login (Login operations)
	#bct (Batch-test)
	#extprocess (Run an external process)
	#dummy (Dummy-test control)
	#get (Get a value)

	Statistics
	Automated statistics
	AMSTAT sheet

